-
The precise measurement of weak magnetic fields by using high-sensitivity magnetometers is not only widely used, but also promotes the development of many research fields. The magnetic field measurement capability of the magnetometer determines the potential and scope of its application, which means that research on its magnetic field measurement capability is essential. In this work, we develop a rubidium-xenon vapor cell atomic magnetometer. The cell filled with 5-torr 129Xe, 250-torr N2 and a droplet of enriched 87Rb is placed in the center of a five-layer magnetic shield with four sets of inner coils to control the internal magnetic field environment. In the cell, 129Xe is polarized by spin exchange collisions with 87Rb atoms, which are pumped with a circularly polarized laser beam at the D1 transition. If magnetic fields or pulses are applied to the cell, the polarization state of 87Rb and 129Xe will change and evolve, whose evolution process can be described by a pair of Bloch equations. The analysis of the Bloch equations indicates that the rubidium-xenon vapor cell atomic magnetometer can measure magnetic fields by two different methods. The magnetic field measurement capabilities of the two methods are experimentally calibrated respectively. The first method is to measure the alternating current (AC) magnetic fields by measuring the influence of the external magnetic fields on the polarization of the 87Rb atoms. The experimental results show that the sensitivity of the AC magnetic field measurement is about $1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $ in a frequency range of 2100 Hz, and the bandwidth is about 2.8 kHz. The second method is to measure the static magnetic fields by measuring the Larmor frequency of the hyperpolarized 129Xe in the cell. Considering that its measurement accuracy is limited by the relaxation of the hyperpolarized 129Xe, the transverse and longitudinal relaxation time are measured to be about 20.6 s and 21.5 s, respectively. Then, the experimental calibration results indicate that the static magnetic field measurement precision is about 9.4 pT and the measurement range exceeds 50 μT, which prove that the static magnetic field measurement can still be performed under geomagnetic field (50 μT). The rubidium-xenon vapor cell atomic magnetometer enables the measurement of AC magnetic fields and static magnetic fields in the same system. Compared with the spin exchange relaxation free (SERF) atomic magnetometer, the rubidium-xenon vapor cell atomic magnetometer has some unique advantages. For AC magnetic field measurement, it has a wider frequency range. For static magnetic field measurement, it can be performed under geomagnetic field and can give the magnetic field measurement value without using the calibration parameters of the system. These characteristics make the rubidium-xenon vapor cell atomic magnetometer have broad application prospects. It is expected to be applied to geomagnetic surveys, basic physics and other aspects of research.-
Keywords:
- hyperpolarized xenon /
- free induction decay /
- Larmor frequency /
- magnetic field measurement
[1] Primdahl F 1979 J. Phys. E 12 241Google Scholar
[2] 杨波, 卜雄洙, 王新征, 于靖 2014 63 200702Google Scholar
Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar
[3] 张裕恒, 李玉芝, 郑捷飞 1984 33 58Google Scholar
Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar
[4] Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar
[5] 刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 52 2580Google Scholar
Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar
[6] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar
[7] Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar
[8] Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491
[9] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 59 877Google Scholar
Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar
[10] 顾源, 石荣晔, 王延辉 2014 63 110701Google Scholar
Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar
[11] 汪之国, 罗晖, 樊振方, 谢元平 2016 65 210702Google Scholar
Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar
[12] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 66 160701Google Scholar
Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar
[13] 陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001
Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001
[14] Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar
[15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 67 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar
[16] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[17] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 66 230601Google Scholar
Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar
[18] Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar
[19] Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar
[20] Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar
[21] Walker T G 1989 Phys. Rev. A 40 4959Google Scholar
[22] Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar
[23] 李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3
Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3
[24] Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar
[25] Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg)
138 341Google Scholar [26] Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar
[27] Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970
[28] Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University
[29] Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar
[30] Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar
[31] Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar
[32] Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar
[33] Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar
[34] Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar
[35] Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar
[36] Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar
[37] Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar
[38] Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar
[39] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar
-
图 2 (a) 铷-氙气室原子磁力仪频率响应曲线; (b) 300 Hz定标磁场噪声曲线; (c) 1200 Hz定标磁场噪声曲线; (d) 1200 Hz定标磁场噪声曲线
Figure 2. (a) The frequency response curve of rubidium-xenon vapor cell atomic magnetometer; (b) the calibration magnetic field noise curve at frequency 300 Hz; (c) the calibration magnetic field noise curve at frequency 1200 Hz; (d) the calibration magnetic field noise curve at frequency 2100 Hz
图 5 超极化
$^{129}{\rm{Xe}}$ 拉莫频率的概率密度统计分布直方图 (a) 由铷-氙气室原子磁力仪系统本身与电流源不稳定性导致; (b) 由电流源不稳定性导致Figure 5. Probability density statistical distribution histogram of the Larmor frequency of the hyperpolarized
$^{129}{\rm{Xe}}$ : (a) Caused by the rubidium-xenon vapor cell atomic magnetometer system itself and the current source instability; (b) caused by the current source instability. -
[1] Primdahl F 1979 J. Phys. E 12 241Google Scholar
[2] 杨波, 卜雄洙, 王新征, 于靖 2014 63 200702Google Scholar
Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar
[3] 张裕恒, 李玉芝, 郑捷飞 1984 33 58Google Scholar
Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar
[4] Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar
[5] 刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 52 2580Google Scholar
Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar
[6] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar
[7] Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar
[8] Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491
[9] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 59 877Google Scholar
Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar
[10] 顾源, 石荣晔, 王延辉 2014 63 110701Google Scholar
Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar
[11] 汪之国, 罗晖, 樊振方, 谢元平 2016 65 210702Google Scholar
Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar
[12] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 66 160701Google Scholar
Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar
[13] 陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001
Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001
[14] Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar
[15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 67 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar
[16] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[17] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 66 230601Google Scholar
Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar
[18] Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar
[19] Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar
[20] Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar
[21] Walker T G 1989 Phys. Rev. A 40 4959Google Scholar
[22] Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar
[23] 李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3
Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3
[24] Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar
[25] Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg)
138 341Google Scholar [26] Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar
[27] Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970
[28] Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University
[29] Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar
[30] Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar
[31] Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar
[32] Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar
[33] Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar
[34] Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar
[35] Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar
[36] Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar
[37] Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar
[38] Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar
[39] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar
Catalog
Metrics
- Abstract views: 10148
- PDF Downloads: 179
- Cited By: 0