Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of magnetic field of capacitor-coil target using proton radiography

Han Bo Liang Ya-Qiong

Citation:

Measurement of magnetic field of capacitor-coil target using proton radiography

Han Bo, Liang Ya-Qiong
PDF
HTML
Get Citation
  • Proton radiography is a widely used method to diagnose the electromagnetic field of plasma. When protons pass through the electromagnetic field of plasma, they are deflected by Lorentz force and redistributed on the recorder. How to reconstruct electromagnetic field from the experimental result is an open problem. In this paper, we take the laser-driven capacitor-coil target for example to introduce and compare particle tracing and flux analysis, which are two widely used methods in proton radiography experiment to reconstruct the magnetic field. The capacitor-coil target is an important method to generate strong magnetic field in laser plasma experiment, where the strong current flows in the coil and its producing magnetic field may be larger than kilotesla. Firstly, the theoretical magnetic fields of capacitor-coil target are calculated with current being 10 kA and 50 kA. Secondly, the Geant4 is used to simulate the proton radiographs, where protons with 7.5 MeV pass through the target and the theoretical magnetic field is recorded. Thirdly, the theoretical proton radiographs are analyzed by the flux analysis method, and two magnetic fields are reconstructed. Finally, the theoretical magnetic fields are compared with the reconstructed ones, and the advantages and disadvantages of these two methods are analyzed. Particle tracing rebuilds the geometry distribution of proton source, plasma magnetic field and recorder in experiment, and it needs few assumptions. However, it strongly relies on accurate calculation of theoretical magnetic field and proton trajectory, and it requires to change the magnetic field over and over to achieve a closest result to the experimental proton radiograph. Meanwhile, particle tracing method consumes a lot of computation sources. The flux analysis directly reconstructs the magnetic field from experimental proton radiograph. However, it is only applicable to the case of weak magnetic field, and the error becomes larger for the case of stronger magnetic field. A dimensionless parameter μ is used to estimate the deflection of proton in the magnetic field, which measures the amount of deflection per unit length in the interaction region. The flux analysis method is applicable to the $\mu\ll 1$ regime. Additionally, the target may absorb the proton when the energy of proton is low and produces shadow on the proton radiograph, which leads to some difference between the original magnetic field and the reconstructed result.
      Corresponding author: Liang Ya-Qiong, yaqliang@hotmail.com
    [1]

    Mackinnon A J, Patel P K, Town R P, et al. 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [2]

    Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [3]

    Li C K, Seguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [4]

    Rygg J R, Seguin F H, Li C K, et al. 2008 Science 319 1223Google Scholar

    [5]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Lowenbruck K, MacKinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [6]

    Huntington C M, Fiuza F, Ross J S, et al. 2015 Nat. Phys. 11 173Google Scholar

    [7]

    Hatchett S P, Brown C G, Cowan T E, et al. 2000 Phys. Plasmas 7 2076Google Scholar

    [8]

    Snavely R A, Key M H, Hatchett S P, et al. 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [9]

    Maksimchuk A, Gu S, Flippo K, Umstadter D, Bychenkov A Yu 2000 Phys. Rev. Lett. 84 4108Google Scholar

    [10]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I, Watts I, Dangor A E 2000 Phys. Rev. Lett., 84 670Google Scholar

    [11]

    Roth M, Schollmeier M 2017 arXiv:1705.10569

    [12]

    Li C K, Sguin F H, Frenje J A, et al. 2006 Rev. Sci. Instrum. 77 10E

    [13]

    Manuel M J, Zylstra A B, Rinderknecht H G, Casey D T, Rosenberg M J, Sinenian N, Li C K, Frenje J A, Séguin F H, Petrasso R D 2012 Rev. Sci. Instrum. 83 063506Google Scholar

    [14]

    Levy M C, Ryutov D D, Wilks S C, Ross J S, Huntington C M, Fiuza F, Martinez D A, Kugland N L, Baring M G, Park H S 2015 Rev. Sci. Instrum. 86 033302Google Scholar

    [15]

    Zhang C J, Hua J F, Wan Y, Pai C H, Guo B, Zhang J, Ma Y, Li F, Wu Y P, Chu H H, Gu Y Q, Xu X L, Mori W B, Joshi C, Wang J, Lu W 2017 Phys. Rev. Lett. 119 064801Google Scholar

    [16]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [17]

    Graziani C, Tzeferacos P, Lamb D Q, Li C K 2017 Rev. Sci. Instrum. 88 123507Google Scholar

    [18]

    Bott A F A, Graziani C, Tzeferacos P, White T G, Lamb D Q, Gregori G, Schekochihin A A 2017 J. Plasma Phys. 83 905830614Google Scholar

    [19]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Zou S Y, Chen J, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [20]

    Du B, Cai H B, Zhang W S, Tian J M, Zhang E H, Zou S Y, Chen J, Zhu S P 2019 Plasma Phys. Control. Fusion 62 025017

    [21]

    Daido H, Miki F, Mima K, Fujita M, Sawai K, Fujita H, Kitagawa Y, Nakai S, Yamanaka C 1986 Phys. Rev. Lett. 56 846Google Scholar

    [22]

    Courtois C, Ash A D, Chambers D M, Grundy R A, Woolsey N C 2005 J. Appl. Phys. 98 054913Google Scholar

    [23]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

    [24]

    Pei X X, Zhong J Y, Sakawa Y, et al. 2016 Phys. Plasmas 23 032125Google Scholar

    [25]

    Yuan X X, Zhong J Y, Zhang Z, et al. 2018 Plasma Phys. Control. Fusion 60 065009Google Scholar

    [26]

    Pia M G 2003 Nucl. Phys. B Proc. Suppl. 125 60Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [28]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [29]

    McGuire E J 1991 J. Appl. Phys. 70 7213Google Scholar

  • 图 1  (a)电容线圈靶构造; (b)电容线圈靶磁场的分布示意图, 粉红色半透明区域为靶结构, 白色箭头标示了电流方向, 彩色箭头为X-Y平面的磁场结构; (c) 质子成像技术实验设置

    Figure 1.  (a) Configuration of capacitor-coil target; (b) schematic of magnetic field of capacitor-coil target. Pink-semitransparent is the coil, white arrows indicate the current direction, and colorful arrows indicate the magnetic field in X-Y plane; (c) experimental setup of proton radiography.

    图 2  Geant4模拟结果, 图片中的坐标为放大10倍的成像板处的坐标 (a)线圈电流I = 0的静态结果; (b)线圈电流I = 10 kA的结果; (c)线圈电流I = 50 kA的结果. 红色虚线是线圈阴影的位置

    Figure 2.  Simulation results of Geant4, the coordinates are adjusted at the position of detector: (a) Coil current I = 0; (b) coil current I = 10 kA; (c) coil current I = 50 kA. The red dash regions are the position of the shadow of the coils

    图 3  (a) I = 10 kA的理论磁场结构分布; (b) I = 50 kA 的理论磁场结构分布; (c) I = 10 kA 的理论磁感应强度分布; (d) I = 50 kA的理论磁感应强度分布. 黑色虚线是线圈阴影的位置. 图片中的坐标为放大10 倍后成像板处的坐标

    Figure 3.  (a) Theoretical magnetic strength for I = 10 kA; (b) theoretical magnetic strength for I = 50 kA; (c) theoretical magnetic configuration for I = 10 kA; (d) theoretical magnetic configuration for I = 50 kA. The black dash regions are the position of the shadow of the coils. The coordinates are adjusted at the position of detector

    图 4  (a) I = 10 kA的理论重构结构分布; (b) I = 50 kA 的重构磁场结构分布; (c) I = 10 kA 的重构磁感应强度分布; (d) I = 50 kA的理论重构强度分布. 黑色虚线是线圈阴影的位置. 图片中的坐标为放大10 倍后成像板处的坐标

    Figure 4.  (a) Reconstructed magnetic strength for I = 10 kA; (b) reconstructed magnetic strength for I = 50 kA; (c) reconstructed magnetic configuration for I = 10 kA; (d) reconstructed magnetic configuration for I = 50 kA. The black dash regions are the position of the shadow of the coils. The coordinates are adjusted at the position of detector

    图 5  (a) I = 10 kA, 沿Y方向的理论磁场和重构磁场在–0.15 cm < X < 0.15 cm 区域平均值的对比; (b) I = 50 kA, 沿Y方向的理论磁场和重构磁场在–0.15 cm < X < 0.15 cm 区域平均值的对比. (a)和(b)中黑色实线是理论值, 红色实线是重构值, 黑色虚线是线圈顶端对应的位置; (c)两种情况下沿Y 方向μ值的对比, 蓝色实线为I = 10 kA的结果, 绿色实线为I = 50 kA 的结果

    Figure 5.  (a) Comparison between the mean theoretical and the mean reconstructed magnetic field for the I = 10 kA case in the region of –0.15 cm < X < 0.15 cm along Y direction; (b) comparison between the mean theoretical and the mean reconstructed magnetic field for the I = 50 kA case in the region of –0.15 cm < X < 0.15 cm along Y direction. The black solid lines are the theoretical results. The red solid lines are the reconstructed line. The black dash lines are the position of the tips of the coils; (c) comparison of μ value along the Y direction between the I = 10 kA and I = 50 kA cases

    图 6  黑色实线和散点是电流强度与圆弧顶点处磁感应强度的关系. 不同颜色的实线和散点分别是质子能量为1, 4, 7.5 和10 MeV时实验设置中相应的μ

    Figure 6.  Black solid line and scatters are the relation between current strength and the magnetic flux density at the top of the nickel coil. The colorful solid line and scatters are the corresponding μ values when proton energy is 1, 4, 7.5 and 10 MeV, respectively

    Baidu
  • [1]

    Mackinnon A J, Patel P K, Town R P, et al. 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [2]

    Mackinnon A J, Patel P K, Borghesi M, et al. 2006 Phys. Rev. Lett. 97 045001Google Scholar

    [3]

    Li C K, Seguin F H, Frenje J A, et al. 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [4]

    Rygg J R, Seguin F H, Li C K, et al. 2008 Science 319 1223Google Scholar

    [5]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Lowenbruck K, MacKinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [6]

    Huntington C M, Fiuza F, Ross J S, et al. 2015 Nat. Phys. 11 173Google Scholar

    [7]

    Hatchett S P, Brown C G, Cowan T E, et al. 2000 Phys. Plasmas 7 2076Google Scholar

    [8]

    Snavely R A, Key M H, Hatchett S P, et al. 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [9]

    Maksimchuk A, Gu S, Flippo K, Umstadter D, Bychenkov A Yu 2000 Phys. Rev. Lett. 84 4108Google Scholar

    [10]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I, Watts I, Dangor A E 2000 Phys. Rev. Lett., 84 670Google Scholar

    [11]

    Roth M, Schollmeier M 2017 arXiv:1705.10569

    [12]

    Li C K, Sguin F H, Frenje J A, et al. 2006 Rev. Sci. Instrum. 77 10E

    [13]

    Manuel M J, Zylstra A B, Rinderknecht H G, Casey D T, Rosenberg M J, Sinenian N, Li C K, Frenje J A, Séguin F H, Petrasso R D 2012 Rev. Sci. Instrum. 83 063506Google Scholar

    [14]

    Levy M C, Ryutov D D, Wilks S C, Ross J S, Huntington C M, Fiuza F, Martinez D A, Kugland N L, Baring M G, Park H S 2015 Rev. Sci. Instrum. 86 033302Google Scholar

    [15]

    Zhang C J, Hua J F, Wan Y, Pai C H, Guo B, Zhang J, Ma Y, Li F, Wu Y P, Chu H H, Gu Y Q, Xu X L, Mori W B, Joshi C, Wang J, Lu W 2017 Phys. Rev. Lett. 119 064801Google Scholar

    [16]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar

    [17]

    Graziani C, Tzeferacos P, Lamb D Q, Li C K 2017 Rev. Sci. Instrum. 88 123507Google Scholar

    [18]

    Bott A F A, Graziani C, Tzeferacos P, White T G, Lamb D Q, Gregori G, Schekochihin A A 2017 J. Plasma Phys. 83 905830614Google Scholar

    [19]

    杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 68 185205Google Scholar

    Du B, Cai H B, Zhang W S, Zou S Y, Chen J, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar

    [20]

    Du B, Cai H B, Zhang W S, Tian J M, Zhang E H, Zou S Y, Chen J, Zhu S P 2019 Plasma Phys. Control. Fusion 62 025017

    [21]

    Daido H, Miki F, Mima K, Fujita M, Sawai K, Fujita H, Kitagawa Y, Nakai S, Yamanaka C 1986 Phys. Rev. Lett. 56 846Google Scholar

    [22]

    Courtois C, Ash A D, Chambers D M, Grundy R A, Woolsey N C 2005 J. Appl. Phys. 98 054913Google Scholar

    [23]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

    [24]

    Pei X X, Zhong J Y, Sakawa Y, et al. 2016 Phys. Plasmas 23 032125Google Scholar

    [25]

    Yuan X X, Zhong J Y, Zhang Z, et al. 2018 Plasma Phys. Control. Fusion 60 065009Google Scholar

    [26]

    Pia M G 2003 Nucl. Phys. B Proc. Suppl. 125 60Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [28]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [29]

    McGuire E J 1991 J. Appl. Phys. 70 7213Google Scholar

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Zhang Zhen-Chi, Tang Hui-Bo, Wang Jin-Can, Si Hua-Chong, Wang Zhi, Lan Xiang, Hu Guang-Yue. Influence of background gas on flute instability produced at interface between laser plasma and external magnetic field. Acta Physica Sinica, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [3] Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [4] Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil. Acta Physica Sinica, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [5] Zhang Tian-Kui, Han Dan, Wu Yu-Chi, Yan Yong-Hong, Zhao Zong-Qing, Gu Yu-Qiu. Optimization design of laser X-ray radiography for density diagnosis in compressed matter. Acta Physica Sinica, 2016, 65(4): 045203. doi: 10.7498/aps.65.045203
    [6] Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement. Acta Physica Sinica, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [7] Zhang Ji-Yan, Yang Jia-Min, Yang Guo-Hong, Ding Yao-Nan, Li Jun, Yan Jun, Wu Ze-Qing, Ding Yong-Kun, Zhang Bao-Han, Zheng Zhi-Jian. Investigations on radiative opacity measurement by the method of direct laser-heating and self-backlighting. Acta Physica Sinica, 2013, 62(19): 195201. doi: 10.7498/aps.62.195201
    [8] Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Liu Shen-Ye, Ding Yong-Kun. A multiple monochromatic X-ray imaging spectrometer based on flat Bragg mirror. Acta Physica Sinica, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [9] Chen Min, Sheng Zheng-Ming, Zhang Jie. Evolution of ionization front and its effects on laser pulse propagation in gaseous targets. Acta Physica Sinica, 2006, 55(1): 337-343. doi: 10.7498/aps.55.337
    [10] Zhang Qiu-Ju, Sheng Zheng-Ming, Wang Xing-Hai, Man Bao-Yuan, Cang Yu, Zhang Jie. Vacancy of laser field induced by phase reflection in underdense plasmas and its relation to laser-plasma parameters. Acta Physica Sinica, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [11] Yan Fei, Zhang Jie, Dong Quan-Li, Lu Xin, Li Ying-Jun. Numerical simulation of x-ray lasers pumped by grazing incidence pulses. Acta Physica Sinica, 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [12] Zhang Qiu-Ju, Sheng Zheng-Ming, Cang Yu, Zhang Jie. Density modulation produced by ultrashort laser pulses and the phase reflection induced in underdense plasmas. Acta Physica Sinica, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [13] Wang Wei, Zhang Jie, Dong Quan-Li, V.K.Senecha. Effects of target thickness on spectral characteristics of x-ray flux from the laser-produced plasmas. Acta Physica Sinica, 2004, 53(3): 967-972. doi: 10.7498/aps.53.967
    [14] Cheng Jin-Xiu, Zheng Zhi-Jian, Chen Hong-Su, Miao Wen-Yong, Chen Bo, Wang Yao-Mei, Hu Xin. Implosion compression characteristic of direct-driven ablation target with 1.06μm laser. Acta Physica Sinica, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [15] Yang Jia-Min, Ding Yao-Nan, Zheng Zhi-Jian, Wang Yao-Mei, Zhang Wen-Hai, Zhang Ji-Yan, Liu Jin-Yuan, San Bing, Gao Sheng-Chen, Ren You-Lai, Liu Xiu-Qin. Diagnostic technology of time-and space-resolved soft-x-ray spectra. Acta Physica Sinica, 2003, 52(6): 1427-1431. doi: 10.7498/aps.52.1427
    [16] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [17] . Acta Physica Sinica, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [18] BAI BO, ZHENG JIAN, LIU WAN-DONG, YU CHANG-XUAN, JIANG XIAO-HUA, LIU SHEN-YE, ZHENG ZHI-JIAN. SECOND HARMONIC LIGHT EMISSION FROM PLASMAS PRODUCED WITH 1.053μm LASER. Acta Physica Sinica, 2001, 50(4): 726-729. doi: 10.7498/aps.50.726
    [19] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  6055
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2020
  • Accepted Date:  01 June 2020
  • Available Online:  01 June 2020
  • Published Online:  05 September 2020

/

返回文章
返回
Baidu
map