Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms

Wang Ting Jiang Li Wang Xia Dong Chen-Zhong Wu Zhong-Wen Jiang Jun

Citation:

Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms

Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun
PDF
HTML
Get Citation
  • The wave functions, energy levels, and oscillator strengths of Be+ ions and Li atoms are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization method (RCICP). The calculated energy levels in this work are in good agreement with experimental levels tabulated in NIST Atomic Spectra Database, and the difference appears in the sixth digit after the decimal point. The present oscillator strengths are in good agreement with the existing theoretical and experimental results. By means of these energy levels and oscillator strengths, the electric-dipole static polarizabilities and hyperpolarizabilities of the ground states are determined. The contributions of different intermediate states to the hyperpolarizabilities of the ground state are further discussed. For Be+ ions, the present electric-dipole polarizability and hyperpolarizability are in good agreement with the results calculated by Hartree-Fock plus core polarization method, the finite field method and relativistic many-body method. The largest contribution to the hyperpolarizability is the term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$. For Li atoms, the present electric-dipole polarizability is in good agreement with the available theoretical and experimental results. However, the present hyperpolarizability is different from the other theoretical results significantly. Moreover, the hyperpolarizabilities calculated by different theoretical methods are quite different. The biggest difference is more than one order of magnitude. In order to explain the reason for these differences, we analyze the contributions of different intermediate states to the hyperpolarizability in detail. It is found that the sum of the contributions of the 2s→npj$\left( {n \geqslant 3} \right)$ and npjndj$\left( {n \geqslant 3} \right)$ to hyperpolarizability is approximately equal to that term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$. The total hyperpolarizability, which is the difference between the sum of the contributions of the 2snpj$\left( {n \geqslant 3} \right)$ and npjndj$\left( {n \geqslant 3} \right)$ to hyperpolarizability and $\alpha _{\text{0}}^{\text{1}}{\beta _0}$, is relatively small. Consequently, this difference magnifies the calculated error. If the uncertainties of the transition matrix elements are less than 0.1%, the uncertainty of hyperpolarizability is more than 100%. Therefore, the differences of hyperpolarizabilities for the ground state of Li atoms, calculated by various theoretical methods, are more than 100% or one order of magnitude.
      Corresponding author: Jiang Jun, phyjiang@yeah.net
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. 11774292, 11804280, 11864036)
    [1]

    Kassimi E B, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [2]

    Dür W, Briegel H J 2002 Phys. Rev. Lett. 90 067901Google Scholar

    [3]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2005 Phys. Rev. A 72 052330Google Scholar

    [4]

    Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323Google Scholar

    [5]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [6]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [7]

    Neuhauser W, Hohenstatt M, Toschek P E, Dehmelt H 1978 Phys. Rev. Lett. 41 233Google Scholar

    [8]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [9]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [10]

    Pihan-Le Bars H, Guerlin C, Bailey Q G, Bize S, Wolf P 2017 arXiv: 1701.06902[gr-qc]

    [11]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [12]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [13]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [16]

    Brusch A, Le T R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [17]

    Barbe Z W, Lemke J E, Polt N D 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [18]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [19]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [20]

    Katori H, Takamoto M, Pal'Chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [21]

    Porsev S G, Safronova M S, Safronova U I, Kozlov M G 2018 Phys. Rev. Lett. 120 063204Google Scholar

    [22]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [23]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [24]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [25]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [26]

    Fuentealba P, Reyes O 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2245Google Scholar

    [27]

    Jiang J, Mitroy J, Cheng Y J, Bromley M W J 2016 Phys. Rev. A 94 062514Google Scholar

    [28]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [29]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [30]

    Yin D, Zhang Y H, Li C B, Gao K L, Shi T Y 2016 Sci. China Phys. Mech. 59 690011Google Scholar

    [31]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [32]

    Stiehler J, Hinze J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4055Google Scholar

    [33]

    Pipin J, Bishop D M 1992 Phys. Rev. A 45 2736Google Scholar

    [34]

    Maroulis G, Thakkar A J 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2439Google Scholar

    [35]

    Nicolaides C A, Themelis S I 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2217Google Scholar

    [36]

    Kaneko S 1977 J. Phys. B: At. Mol. Opt. Phys. 10 3347Google Scholar

    [37]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [38]

    Bhatia A K, Drachman R J 1997 Can. J. Phys. 75 11Google Scholar

    [39]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [40]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [41]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [42]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team https://physics.nist.gov/asd [2019-9-10]

    [43]

    Adelman S A, Szabo A 1973 J. Chem. Phys. 58 687Google Scholar

    [44]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [45]

    Patil S H, Tang K T 1997 J. Chem. Phys. 106 2298Google Scholar

    [46]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [47]

    Chen C, Wang Z W 2004 J. Chem. Phys. 121 4171Google Scholar

    [48]

    Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P, Mukherjee D 2010 Phys. Rev. A 82 029901Google Scholar

    [49]

    Johnson W R, Safronova U I, Derevianko A, Safronova M S 2008 Phys. Rev. A 77 022510Google Scholar

    [50]

    Zhang J Y, Mitroy J, Bromley M W J 2007 Phys. Rev. A 75 810Google Scholar

    [51]

    Derevianko A, Babb J F, Dalgarno A 2001 Phys. Rev. A 63 052704Google Scholar

    [52]

    Cohen S, Themelis S. I. 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3705Google Scholar

    [53]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [54]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J D 38 353Google Scholar

  • 表 1  Be+离子和Li原子的截断参数${\rho _{l, j}}$(单位: a.u.)

    Table 1.  Cut-off parameters${\rho _{l, j}}$of Be+ ions and Li atoms (in a.u.).

    Statejρl, j
    Be+Li
    2s1/20.95521.40880
    2p1/20.87891.28466
    3/20.87751.28396
    3d3/20.12872.324
    5/20.12842.330
    DownLoad: CSV

    表 2  Be+离子和Li原子基态和部分低激发态相对于原子实的能级, 实验值(Exp.)是来自于NIST的数据(单位: a.u.)

    Table 2.  Energy levels of the ground state and some low-lying states of Be+ ions and Li atoms relative to atomic core. Experimental values (Exp.) are from the NIST data (in a.u.).

    StatejBe+Li
    RCICPExpt.[42]RCICPExpt.[42]
    2s 1/2 –0.66924767 –0.66924755 –0.1981419 –0.1981419
    2p 1/2 –0.52376962 –0.52376949 –0.1302358 –0.1302358
    3/2 –0.52373967 –0.52373953 –0.1302343 –0.1302343
    3s 1/2 –0.26719384 –0.26723337 –0.0741684 –0.0741817
    3p 1/2 –0.22954214 –0.22958234 –0.0572264 –0.0572354
    3/2 –0.22953331 –0.22957356 –0.0572260 –0.0572354
    3d 3/2 –0.22247809 –0.22247805 –0.0556055 –0.0556057
    5/2 –0.22247565 –0.22247565 –0.0556051 –0.0556055
    4s 1/2 –0.14313397 –0.14315285 –0.0386096 –0.0386151
    4p 1/2 –0.12811380 –0.12813485 –0.0319693 –0.0319744
    3/2 –0.12811009 –0.12813115 –0.0319691 –0.0319744
    4d 3/2 –0.12512357 –0.12512455 –0.0308153 –0.0312735
    5/2 –0.12512257 –0.12512345 –0.0308152 –0.0312734
    5s 1/2 –0.08905659 –0.08906605 –0.0236202 –0.0236365
    5p 1/2 –0.08159826 –0.08160960 –0.0203583 –0.0203739
    3/2 –0.08159637 –0.08160765 –0.0203583 –0.0203739
    5d 3/2 –0.08006698 –0.08006725 –0.0124153 –0.0200122
    5/2 –0.08006648 –0.08006670 –0.0124152 –0.0200122
    DownLoad: CSV

    表 3  Be+离子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 3.  Oscillator strengths of transitions between the ground state and some low-lying states of Be+ ions. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPNIST[42]Theor.[25]Diff./%
    2s1/2→2p1/20.166240.165960.16610.17
    2s1/2→2p3/20.332580.331980.33220.18
    2s1/2→3p1/20.027600.027680.02770.29
    2s1/2→3p3/20.055170.055400.05530.42
    2p1/2→3s1/20.064340.064380.06440.06
    2p3/2→3s1/20.064360.064380.06440.03
    2p1/2→4s1/20.010220.010390.01021.64
    2p3/2→4s1/20.010220.010390.01021.64
    2p1/2→3d3/20.63200.63200.63190.00
    2p3/2→3d3/20.06320.06320.06320.00
    2p3/2→3d5/20.56890.56890.56880.00
    3s1/2→3p1/20.27680.27670.27670.04
    3s1/2→3p3/20.55380.55350.55350.05
    3p1/2→3d3/20.080690.081130.08110.54
    3p3/2→3d3/20.080590.081030.0810.54
    3p3/2→3d5/20.072560.072940.0730.52
    3p1/2→4s1/20.13460.13470.13460.07
    3p3/2→4s1/20.13460.13470.13460.07
    DownLoad: CSV

    表 4  Li原子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果之间差别的百分比

    Table 4.  Oscillator strengths of transitions between the ground state and some low-lying states of Li atoms. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPNIST[42]Theor.[29]Diff./%
    2s1/2→2p1/20.249150.248990.24900.06
    2s1/2→2p3/20.498320.497970.49810.07
    2s1/2→3p1/20.001570.001570.00160.00
    2s1/2→3p3/20.003130.003140.00320.32
    2p1/2→3s1/20.110580.110500.11060.07
    2p3/2→3s1/20.110590.110500.11060.08
    2p1/2→4s1/20.012850.012830.01280.16
    2p3/2→4s1/20.012850.012830.01280.16
    2p1/2→3d3/20.638760.638580.63860.03
    2p3/2→3d3/20.063880.063860.06390.03
    2p3/2→3d5/20.574890.574720.57470.03
    3s1/2→3p1/20.405120.40510.4050.00
    3s1/2→3p3/20.810270.81000.8100.03
    3p1/2→3d3/20.073970.07330.07440.91
    3p3/2→3d3/20.007400.007360.00740.54
    3p3/2→3d5/20.066570.06630.06690.41
    3p1/2→4s1/20.223250.22300.22320.11
    3p3/2→4s1/20.223250.22300.22320.11
    3d3/2→4p1/20.014530.014970.0152.94
    3d3/2→4p3/20.002900.002990.0033.01
    3d5/2→4p3/20.017430.017960.0182.95
    DownLoad: CSV

    表 5  Be+离子基态的电偶极极化率$\alpha _{\rm{0}}^{\rm{1}}$和超极化率${\gamma _{\rm{0}}}$, “Diff.”表示用RCICP方法计算的γ0与其它理论数据之间差别的百分比, 括号内的值表示不确定度

    Table 5.  Electric-dipole polarizability and hyperpolarizability of the ground state of Be+ ions. “Diff.” represents the difference of γ0 in percentage form calculated by RCICP and other theoretical method. The values in parentheses indicate the uncertainties.

    Method$\alpha _{\rm{0}}^{\rm{1}}$/a.u.γ0/a.u.Diff./%
    RCICP24.504(32)–11529.971(84)
    Coulomb approximation[43]24.77
    Variation-perturbation Hylleraas CI[44]24.5
    Hylleraas[24]24.489
    Asymptotic correct wave function[45]24.91
    Variation-perturbation FCCI[46,47]24.495
    Hartree-Fock plus core polarization[22]24.493–115110.16
    Hylleraas[22]24.4966(1)–11521.30(3)0.08
    Relativistic many-body calculation[25]24.483(4)–11496(6)0.29
    The finite field method[30]24.5661–11702.311.49
    DownLoad: CSV

    表 6  中间态对Be+离子基态超极化率的贡献, RCICPC表示2s→2pj, 2pj→3dj跃迁的约化矩阵元用NIST[42]结果替换之后计算的结果, 括号内的值表示RCICP相对于RCICPC的不确定度(单位: a.u.)

    Table 6.  Contributions to the hyperpolarizability of the ground state of Be+ ions. RCICPC represents that the reduced matrix elements of the 2s→2pj、2pj→3dj transitions are replaced by NIST[42] results. The values in parentheses indicate the uncertainties of RCICP relative to RCICPC (in a.u.).

    Contr.RCICPRCICPCRMBT[25]
    $\tfrac{1}{18}$T (s, p1/2, s, p1/2)34.34(2)34.3232.605(53)
    $-\tfrac{1}{18}$T (s, p1/2, s, p3/2)68.68(5)68.6368.886(92)
    $-\tfrac{1}{18}$T (s, p3/2, s, p1/2)68.68(5)68.6368.886(92)
    $\tfrac{1}{18}$T (s, p3/2, s, p3/2)137.35(10)137.25137.669(109)
    $T({\rm{s, }}{{\rm{p}}_{j'}}, {\rm{ s}}, {\rm{ }}{{\rm{p}}_{j''}})$308.04(12)308.83308.046(178)
    $\tfrac{1}{18}$T (s, p1/2, d3/2, p1/2)202.75(16)202.59202.031(121)
    $\tfrac{1}{18\sqrt{10} }$T (s, p1/2, d3/2, p3/2)40.55(4)40.5140.403(18)
    $\tfrac{1}{18\sqrt{10} }$T (s, p3/2, d3/2, p1/2)40.55(4)40.5140.403(18)
    $\tfrac{1}{180}$T (s, p3/2, d3/2, p3/2)8.11(1)8.108.080(3)
    $\tfrac{1}{30}$ T (s, p3/2, d5/2, p3/2)437.85(40)437.45438.434(148)
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$729.79(43)729.17729.351(192)
    $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$1999.67(6.95)1992.721995.743(382)
    γ0(2 s)–11529(84)–11456–11496(6)
    DownLoad: CSV

    表 7  Li原子基态的电偶极极化率$\alpha _{\rm{0}}^{\rm{1}}$和超极化率${\gamma _{\rm{0}}}$, 括号内的值表示不确定度(单位: a.u.)

    Table 7.  Electric-dipole polarizability and hyperpolarizability of the ground state of Li atoms. The values in parentheses indicate the uncertainties (in a.u.).

    Method$\alpha _{\rm{0}}^{\rm{1}}$γ0
    RCICP164.05(8)1920(3264)
    The coupled cluster (all single, double and triple substitution)[1]164.192880
    Finite-field quadratic configuration interaction[1]164.321020
    Hylleraas[31]164.112(1)3060(40)
    The relativistic coupled-cluster method[48]164.23
    Relativistic variation perturbation[49]164.084
    Relativistic all-order methods[29]164.16(5)
    Variation perturbation[33]164.103000
    Semiempirical pseudopotentials[26]164.0865000
    Frozen core Hamiltonian with a semiempirical polarization potential[50]164.21
    Finite-field fourth-order many-body perturbation theory[34]164.54300
    Configuration interaction[35]164.937000
    Relativistic ab initio methods[51]164.0(1)
    The restricted Hartree-Fock[32]170.1–55000
    The Rydberg-Klein-Rees inversion method with the quantum defect theory[52]164.143390
    Exp.[53]164(3)
    Exp.[54]164.2(11)
    DownLoad: CSV

    表 8  中间态对Li原子基态超极化率的贡献, RCICPC表示2s→2pj, 2pj→3dj跃迁的约化矩阵元用NIST[42]结果替换之后计算的结果, “Diff.”表示RCICP与RCICPC之间差别的百分比, 括号内的值表示RCICP相对于RCICPC的不确定度

    Table 8.  Contributions to the hyperpolarizability of the ground state of Li atoms. RCICPC represents that the reduced matrix elements of 2s→2pj, 2pj→3dj transitions are replaced by NIST[42] results. “Diff.” represents the difference in percentage form between RCICP method and RCICPC. The values in parentheses indicate the uncertainties of RCICP relative to RCICPC.

    Contr.RCICP/a.u.RCICPC/a.u.Diff. /%
    $ \frac{1}{18} $T (s, p1/2, s, p1/2)8314(2)83120.03
    $ -\frac{1}{18} $T (s, p1/2, s, p3/2)16629(5)166240.03
    $ -\frac{1}{18} $T (s, p3/2, s, p1/2)16629(5)166240.03
    $ \frac{1}{18} $T (s, p3/2, s, p3/2)33259(11)332480.03
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {\rm{s}}, {{\rm{p}}_{j''}})$74833(13)748090.02
    $ \frac{1}{18} $T (s, p1/2, d3/2, p1/2)33812(13)337990.04
    $ \frac{1}{18\sqrt{10}} $T (s, p1/2, d3/2, p3/2)6762(3)67590.04
    $ \frac{1}{18\sqrt{10}} $T (s, p3/2, d3/2, p1/2)6762(3)67590.04
    $ \frac{1}{180} $T (s, p3/2, d3/2, p3/2)1352(0)13520.00
    $ \frac{1}{30} $ T (s, p3/2, d5/2, p3/2)73033(40)729930.05
    $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$121723(42)1216610.03
    $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$196396(268)1961280.14
    γ0(2 s)1920(3264)4109170
    DownLoad: CSV
    Baidu
  • [1]

    Kassimi E B, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [2]

    Dür W, Briegel H J 2002 Phys. Rev. Lett. 90 067901Google Scholar

    [3]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2005 Phys. Rev. A 72 052330Google Scholar

    [4]

    Jiang L, Taylor J M, Sørensen A S, Lukin M D 2007 Phys. Rev. A 76 062323Google Scholar

    [5]

    Gorshkov A V, Rey A M, Daley A J, Boyd M M, Ye J, Zoller P, Lukin M D 2009 Phys. Rev. Lett. 102 110503Google Scholar

    [6]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [7]

    Neuhauser W, Hohenstatt M, Toschek P E, Dehmelt H 1978 Phys. Rev. Lett. 41 233Google Scholar

    [8]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [9]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [10]

    Pihan-Le Bars H, Guerlin C, Bailey Q G, Bize S, Wolf P 2017 arXiv: 1701.06902[gr-qc]

    [11]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [12]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [13]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215Google Scholar

    [16]

    Brusch A, Le T R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [17]

    Barbe Z W, Lemke J E, Polt N D 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [18]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [19]

    Derevianko A, Katori H 2011 Rev. Mod. Phys. 83 331Google Scholar

    [20]

    Katori H, Takamoto M, Pal'Chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [21]

    Porsev S G, Safronova M S, Safronova U I, Kozlov M G 2018 Phys. Rev. Lett. 120 063204Google Scholar

    [22]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [23]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [24]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [25]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [26]

    Fuentealba P, Reyes O 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2245Google Scholar

    [27]

    Jiang J, Mitroy J, Cheng Y J, Bromley M W J 2016 Phys. Rev. A 94 062514Google Scholar

    [28]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [29]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [30]

    Yin D, Zhang Y H, Li C B, Gao K L, Shi T Y 2016 Sci. China Phys. Mech. 59 690011Google Scholar

    [31]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [32]

    Stiehler J, Hinze J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4055Google Scholar

    [33]

    Pipin J, Bishop D M 1992 Phys. Rev. A 45 2736Google Scholar

    [34]

    Maroulis G, Thakkar A J 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2439Google Scholar

    [35]

    Nicolaides C A, Themelis S I 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2217Google Scholar

    [36]

    Kaneko S 1977 J. Phys. B: At. Mol. Opt. Phys. 10 3347Google Scholar

    [37]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [38]

    Bhatia A K, Drachman R J 1997 Can. J. Phys. 75 11Google Scholar

    [39]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [40]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [41]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [42]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team https://physics.nist.gov/asd [2019-9-10]

    [43]

    Adelman S A, Szabo A 1973 J. Chem. Phys. 58 687Google Scholar

    [44]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [45]

    Patil S H, Tang K T 1997 J. Chem. Phys. 106 2298Google Scholar

    [46]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [47]

    Chen C, Wang Z W 2004 J. Chem. Phys. 121 4171Google Scholar

    [48]

    Wansbeek L W, Sahoo B K, Timmermans R G E, Das B P, Mukherjee D 2010 Phys. Rev. A 82 029901Google Scholar

    [49]

    Johnson W R, Safronova U I, Derevianko A, Safronova M S 2008 Phys. Rev. A 77 022510Google Scholar

    [50]

    Zhang J Y, Mitroy J, Bromley M W J 2007 Phys. Rev. A 75 810Google Scholar

    [51]

    Derevianko A, Babb J F, Dalgarno A 2001 Phys. Rev. A 63 052704Google Scholar

    [52]

    Cohen S, Themelis S. I. 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3705Google Scholar

    [53]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [54]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J D 38 353Google Scholar

  • [1] Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan. Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method. Acta Physica Sinica, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [2] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong. Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions. Acta Physica Sinica, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [3] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [4] Yu Xue-Cai, Wang Ping-He, Zhang Li-Xun. Atom movement in momentum dependent light dipole lattices. Acta Physica Sinica, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [5] You Yang-Ming, Wang Bing-Zhang, Wang Ji-You. Optical model potential of antiproton atoms with nuclear polarization correction. Acta Physica Sinica, 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [6] Tian Mi, Zhang Qiu-Ju, Bai Yi-Ling, Cui Chun-Hong. Scattering of electrons in linearly polarized high-intensity laser standing waves. Acta Physica Sinica, 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [7] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping. Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [8] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [9] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan. Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [10] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [11] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei. Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [12] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong. Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [14] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [15] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [16] ZENG GUI-HUA, ZHU HONG-WEN, XU ZHI-ZHAN. RELATIVISTIC EVEN-ORDER HARMONICS GENERATED IN UNDERDENSE PLASMA. Acta Physica Sinica, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [17] LI GAO-XIANG, PENG JIN-SHENG. . Acta Physica Sinica, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [18] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [19] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [20] . Acta Physica Sinica, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
Metrics
  • Abstract views:  11177
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2020
  • Accepted Date:  12 October 2020
  • Available Online:  03 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map