Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array

Lü Yan-Min Min Fu-Hong

Citation:

Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array

Lü Yan-Min, Min Fu-Hong
PDF
HTML
Get Citation
  • The lack of the relationship between flux and charge has been made up for by the memristor which is suitable to constructing chaotic circuits as a nonlinear element. Commonly, the memristor-based chaotic systems are constructed by introducing the model of memristor into various classical nonlinear circuits, and more special and abundant dynamic behaviors are existent in these memristive systems. With the deepening of research, several novel nonlinear phenomena of memristor circuits have been found, such as hidden attractors, self-excited attractors and anti-monotonic characteristic. Meanwhile, multistability of a memristor-based circuit explained by the coexistence of multiple attractors with different topological structures is a typical phenomenon in a nonlinear system, and it is also one of the hotspots in this field. In addition, the chaotic sequences generated by the memristive circuits are used as additional signals for information transmission or image encryption. Therefore, the study of modeling memristor systems and analyzing various nonlinear behaviors is of certain valuable. In this paper, a four-dimensional flux-controlled memeristive circuit is constructed by introducing an active memristor with absolute value into an improved Chua’s circuit, and the special dynamic behaviors are observed. Through the bifurcation diagrams and Lyapunov exponent spectra, the symmetric bifurcations are shown, and the symmetric system states in parameter mappings are found. Besides, the distribution maps of memristive circuit are used to analyze the multistability in a symmetrical attraction domain, and the corresponding phase diagrams are depicted to confirm the existence of multistability. Furthermore, the circuit experiments of the flux-controlled memeristive circuit are implemented by the field programmable gate array simulation, and the experimental results are obtained on a digital oscilloscope, which proves the physical implementability of the memristor-based system.
      Corresponding author: Min Fu-Hong, minfuhong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871230).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507Google Scholar

    [2]

    林毅, 刘文波, 沈骞 2018 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [3]

    Olumodeji O A, Gottardi M 2017 Integration 58 438Google Scholar

    [4]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [5]

    Guo M, Gao Z H, Xue Y B, Dou G, Li Y X 2018 Nonlinear Dyn. 93 1681Google Scholar

    [6]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [7]

    Peng G Y, Min F H 2017 Nonlinear Dyn. 90 1607Google Scholar

    [8]

    Li C, Min F H, Li C B 2018 Nonlinear Dyn. 94 2785Google Scholar

    [9]

    Peng G, Min F 2018 Computer Electr. Eng. Article ID 86492 9

    [10]

    Feng W, He Y G, Li C L 2018 Complexity 2018 1

    [11]

    Abuelma'Atti M T, Khalifa Z J 2016 Int.J. Electr. Eng. 53 280Google Scholar

    [12]

    Bao B C, Li Q D, Wang N 2016 Chaos 26 043111Google Scholar

    [13]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230Google Scholar

    [14]

    Kengne J, Negou A N, Tchiotsop D 2017 Nonlinear Dyn. 27 1

    [15]

    Bao B C, Xu L, Wang N, Bao H, Xu Q, Chen M 2018 Int. J. Electr. Com. 94 26Google Scholar

    [16]

    王伟, 曾以成, 孙睿婷 2017 66 040502Google Scholar

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502Google Scholar

    [17]

    Min F H, Li C, Zhang L, Li C B 2019 Chin. J. Phys. 58 117Google Scholar

    [18]

    Feudel U, Kraut S 2008 Int. J. Bifurcat. Chaos 18 1607Google Scholar

    [19]

    Ngonghala C N, Feudel U 2011 Phys. Rev. E: Stat. Nonlinear Soft. Matter Phys. 83 056206Google Scholar

    [20]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 264Google Scholar

    [21]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [22]

    Da C, Rafael A, Eisencraf M 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 441Google Scholar

    [23]

    Yavuz O, Erdem E 2019 Opt. Laser Technol. 114 224Google Scholar

    [24]

    Njitacke Z T, Kengne J 2017 Chaos, Sol. Frac. 105 77Google Scholar

    [25]

    Li C B, Akgul A, Sprott J C, Lu H H C, Thio W J C 2018 Int. J. Circ. Theor. Appl. 46 2434Google Scholar

    [26]

    Li C B, Sprott J C, Liu Y J, Gu Z Y, Zhang J W 2018 Int. J. Bifurcat. Chaos 28 1850163Google Scholar

    [27]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 109

  • 图 1  电路模型 (a)磁控忆阻电路; (b)磁控忆阻等效电路

    Figure 1.  Circuit schematic: (a) Flux-controlled memristor circuit; (b) equivalent Circuit of flux-controlled memristor.

    图 2  $y-z$平面上典型混沌吸引子的相图与Poincaré截面图 (a)相图; (b) Poincaré截面图

    Figure 2.  Phase portrait and Poincaré map of typical chaotic attractor in $y-z$ plane: (a) Phase portrait; (b) Poincaré map

    图 3  随参数$\gamma $变化的分岔图与Lyapunov指数谱 (a)分岔图; (b)Lyapunov指数谱

    Figure 3.  Bifurcation and Lyapunov exponent spectrum with parameter $\gamma $: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum

    图 4  随参数c变化的分岔图与Lyapunov指数谱 (a)分岔图; (b) Lyapunov指数谱

    Figure 4.  Bifurcation and Lyapunov exponent spectrum with parameter $c$: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum.

    图 5  双参数吸引盆 (a)参数$\gamma -b$; (b)参数$c-b$; (c)参数$\gamma -\xi $; (d)参数$c-\xi $

    Figure 5.  Parameter mappings: (a) Parameter $\gamma $ and $b$; (b) parameter $c$ and $b$; (c) parameter $\gamma $ and $\xi $; (d) parameter $c$ and $\xi $

    图 6  不同变量组合下的共存吸引盆 (a) $\gamma -x\left(0\right)$平面, 初始条件为$\left(x\left(0\right),0,0,0\right)$; (b)$c-x\left(0\right)$平面, 初始条件为$\left(x\left(0\right),0,0,0\right)$

    Figure 6.  Attraction basins of coexistence in different planes: (a) $\gamma -x\left(0\right)$ plane, with initial value of $\left(x\left( 0 \right),0,0,0\right)$; (b) $c-x\left(0\right)$ plane, with initial value of $\left(x\left(0\right),0,0,0\right)$

    图 7  不同变量组合下系统状态分布图 (a) $\gamma -w(0)$平面, 初始条件为$( - {10^{ - 9}},0,0,w(0))$; (b)$c-w(0)$平面, 初始条件为$( - {10^{ - 9}},0,0,w(0))$; (c)$\gamma -w(0)$平面, 初始条件为$({10^{ - 9}},0,0,w(0))$; (d)$c-w(0)$平面, 初始条件为$({10^{ - 9}},0,0,w(0))$

    Figure 7.  Attraction basins of coexistence in different planes: (a) $\gamma -w(0)$ plane, with initial value of $( - {10^{ - 9}},0,0,w(0))$; (b) $c-w(0)$ plane, with initial value of $( - {10^{ - 9}},0,0,w(0))$; (c) $\gamma -w(0)$ plane, with initial value of $({10^{ - 9}},0,0,w(0))$; (d) $c-w(0)$ plane, with initial value of $({10^{ - 9}},0,0,w(0))$

    图 8  参数$\gamma {\rm{ = 0}}{\rm{.74}}$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3; (b)左右共存混沌与左右共存周期1

    Figure 8.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $\gamma {\rm{ = 0}}{\rm{.74}}$: (a) Coexisting attractors of period-3; (b) coexisting attractors of chaos and period-1

    图 9  参数$c = 1.274$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3; (b)左右共存混沌与左右共存周期1

    Figure 9.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $c = 1.274$: (a) Coexisting attractors of period-3; (b) coexisting attractors of chaos and period-1.

    图 10  参数$\gamma {\rm{ = 0}}{\rm{.74}}$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3、左右共存周期1与稳定不动点; (b)左右共存混沌与左右共存周期2

    Figure 10.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $\gamma {\rm{ = 0}}{\rm{.74}}$: (a) Coexisting attractors of period-3, period-1 and fixed point; (b) coexisting attractors of chaos and period-2

    图 11  参数$c = 1.274$, $x-z$平面上不同初值下的多种共存吸引子 (a)左右共存周期3与稳定不动点; (b)左右共存混沌与左右共存周期1

    Figure 11.  For different initial value, phase diagram of coexisting attractors in $x-z$ planes when $c = 1.274$: (a) Coexisting attractors of period-3 and fixed point; (b) coexisting attractors of chaos and period-1

    图 12  顶层模块控制流程图

    Figure 12.  The flow chart of calling order

    图 13  FPGA实物连接图与实现结果 (a)实物连接图; (b)y-z平面相图; (c)y, z两项时序图

    Figure 13.  The hardware connection diagram and the result of implementation: (a) The hardware connection diagram; (b) phase diagram in y-z plane; (c) timing diagram of the term y and z

    图 14  固定参数$c = 1.274$x-z平面内不同初值条件下的共存, Ch1 = 500 MV, Ch2 = 500 MV (a)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, 左侧周期1; (b)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.45}}} \right)$, 左侧周期3; (c)初值为$\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.9}}} \right)$, 左侧混沌; (d)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, 右侧周期1; (e)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.45}}} \right)$右侧周期3; (f)初值为$\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.9}}} \right)$, 右侧混沌

    Figure 14.  The phase diagram of coexistence attractors with different initial conditions at $c = 1.274$ in x-z plane, Ch1 = 500 MV, Ch2 = 500 MV: (a) The initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, left period-1; (b) the initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.45}}} \right)$, left period-3; (c) the initial value as $\left( {{\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}{\rm{.9}}} \right)$, left period-3; (d) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,0}}} \right)$, right chaos; (e) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.45}}} \right)$, right period-3; (f) the initial value as $\left( { - {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}}{\rm{,0,0,}} - {\rm{0}}{\rm{.9}}} \right)$, right chaos

    表 1  系统参数

    Table 1.  The valueof system parameters

    参数数值参数数值
    $a$1$\xi $0.12
    $b$3.5$\alpha $0.3
    $c$1$\beta $0.8
    $\gamma $0.86
    DownLoad: CSV

    表 2  参数$\gamma $, c变化时系统运动状态与对应的Lyapunov指数

    Table 2.  The dynamic behavior and Lyapunov exponent with parameter $\gamma $ and $c$

    参数$\gamma $运动状态Lyapunov指数
    $(0.6{\rm{6}},0.{\rm{704}})$稳定不动点$( -, -, -, - )$
    $(0.{\rm{704}},0.8{\rm{08}}) \cup (0.{\rm{829}},0.{\rm{845}})$周期运动$( + , -, -, - )$
    ${\rm{(0}}{\rm{.808,}}\,{\rm{0}}{\rm{.829)}} \cup {\rm{(0}}{\rm{.845,}}\,{\rm{0}}{\rm{.9)}}$复杂运动(混沌, 多周期)$( +,0, -, - )$
    参数c运动状态Lyapunov指数
    ${\rm{(0}}{\rm{.9,}}\,{\rm{1}}{\rm{.02)}} \cup {\rm{(1}}{\rm{.07,1}}{\rm{.13)}}$复杂运动(混沌, 多周期)$( +,0, -, - )$
    ${\rm{(1}}{\rm{.02,}}\,{\rm{1}}{\rm{.07)}} \cup {\rm{(1}}{\rm{.13,}}\,{\rm{1}}{\rm{.41)}}$周期运动$( + , -, -, - )$
    $({\rm{1}}{\rm{.41,1}}{\rm{.5}})$稳定不动点$( -, -, -, - )$
    DownLoad: CSV

    表 3  不同颜色所对应的系统运动状态

    Table 3.  Colors and the corresponding system states

    颜色 系统运动
    紫色稳定不动点
    蓝色周期1
    绿色周期2
    黄色周期3
    红色复杂运动(混沌, 多周期)
    DownLoad: CSV

    表 4  运动状态与色标的对应表

    Table 4.  Different colors and the corresponding dynamical state

    颜色浅蓝 绿色 黄色 红色 紫色
    共存类型左侧周期1左侧周期2左侧周期3左侧复杂运动(左侧多周期, 混沌)稳定不动点
    颜色深蓝 青色 草绿 橙色
    共存类型右侧周期1右侧周期2右侧周期3右侧复杂运动(右侧多周期, 混沌)
    DownLoad: CSV

    表 5  不同初值对应的共存多吸引子类型

    Table 5.  Coexisting multiple attractor with different initial condition

    参数吸引子类型初始条件
    $\gamma = 0.{\rm{74}}$左右共存点吸引子$\left( \pm {10^{ - 9}},0,0, \mp 0.{\rm{45}}\right)$
    左右共存周期1$\left( \pm 0.1,0,0,0\right)$,$\left( \pm {10^{ - 9}},0,0, \pm {\rm{0}}{\rm{.45}}\right)$
    左右共存周期2, 左右共存周期3$\left( \pm {\rm{1}}{{\rm{0}}^{ - {\rm{9}}}},0,0, \pm {\rm{0}}{\rm{.45}}\right)$, $ \left( \pm 0.{\rm{4}},0,0,0\right) $, $\left( \pm {10^{ - 9}},0,0 \pm 0.{\rm{5}}\right)$
    左右共存混沌$\left( \pm 0.{\rm{8}},0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0, \pm 0.9\right)$
    $c = 1.274$左右共存点吸引子$\left( \pm {10^{ - 9}},0,0, \mp 0.{\rm{45}}\right)$
    左右共存周期1$\left( \pm 0.1,0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0,0\right)$
    左右共存周期3$\left( \pm 0.45,0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0 \pm 0.4{\rm{5}}\right)$
    左右共存混沌$\left( \pm 0.{\rm{8}},0,0,0\right)$, $\left( \pm {10^{ - 9}},0,0, \pm 0.9\right)$
    DownLoad: CSV
    Baidu
  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507Google Scholar

    [2]

    林毅, 刘文波, 沈骞 2018 67 230502Google Scholar

    Lin Y, Liu W B, Shen Q 2018 Acta Phys. Sin. 67 230502Google Scholar

    [3]

    Olumodeji O A, Gottardi M 2017 Integration 58 438Google Scholar

    [4]

    Joglekar Y N, Wolf S J 2009 Eur. J. Phys. 30 661Google Scholar

    [5]

    Guo M, Gao Z H, Xue Y B, Dou G, Li Y X 2018 Nonlinear Dyn. 93 1681Google Scholar

    [6]

    Wang C H, Liu X M, Xia H 2017 Chaos 27 033114Google Scholar

    [7]

    Peng G Y, Min F H 2017 Nonlinear Dyn. 90 1607Google Scholar

    [8]

    Li C, Min F H, Li C B 2018 Nonlinear Dyn. 94 2785Google Scholar

    [9]

    Peng G, Min F 2018 Computer Electr. Eng. Article ID 86492 9

    [10]

    Feng W, He Y G, Li C L 2018 Complexity 2018 1

    [11]

    Abuelma'Atti M T, Khalifa Z J 2016 Int.J. Electr. Eng. 53 280Google Scholar

    [12]

    Bao B C, Li Q D, Wang N 2016 Chaos 26 043111Google Scholar

    [13]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230Google Scholar

    [14]

    Kengne J, Negou A N, Tchiotsop D 2017 Nonlinear Dyn. 27 1

    [15]

    Bao B C, Xu L, Wang N, Bao H, Xu Q, Chen M 2018 Int. J. Electr. Com. 94 26Google Scholar

    [16]

    王伟, 曾以成, 孙睿婷 2017 66 040502Google Scholar

    Wang W, Zeng Y C, Sun R T 2017 Acta Phys. Sin. 66 040502Google Scholar

    [17]

    Min F H, Li C, Zhang L, Li C B 2019 Chin. J. Phys. 58 117Google Scholar

    [18]

    Feudel U, Kraut S 2008 Int. J. Bifurcat. Chaos 18 1607Google Scholar

    [19]

    Ngonghala C N, Feudel U 2011 Phys. Rev. E: Stat. Nonlinear Soft. Matter Phys. 83 056206Google Scholar

    [20]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 264Google Scholar

    [21]

    Wang G Y, Yuan F, Chen G R, Zhang Y 2018 Chaos 28 013125Google Scholar

    [22]

    Da C, Rafael A, Eisencraf M 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 441Google Scholar

    [23]

    Yavuz O, Erdem E 2019 Opt. Laser Technol. 114 224Google Scholar

    [24]

    Njitacke Z T, Kengne J 2017 Chaos, Sol. Frac. 105 77Google Scholar

    [25]

    Li C B, Akgul A, Sprott J C, Lu H H C, Thio W J C 2018 Int. J. Circ. Theor. Appl. 46 2434Google Scholar

    [26]

    Li C B, Sprott J C, Liu Y J, Gu Z Y, Zhang J W 2018 Int. J. Bifurcat. Chaos 28 1850163Google Scholar

    [27]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 109

  • [1] Fu Long-Xiang, He Shao-Bo, Wang Hui-Hai, Sun Ke-Hui. Simulink modeling and dynamic characteristics of discrete memristor chaotic system. Acta Physica Sinica, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [2] Simulink Modeling and Dynamics of a Discrete Memristor Chaotic System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211549
    [3] Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo. Influences of material defects and temperature on current-driven domain wall mobility. Acta Physica Sinica, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [4] Bao Han, Bao Bo-Cheng, Lin Yi, Wang Jiang, Wu Hua-Gan. Hidden attractor and its dynamical characteristic in memristive self-oscillating system. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [5] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [6] Wang Yan, Yang Jiu, Wang Li-Dan, Duan Shu-Kai. Research of coupling behavior based on series-parallel flux-controlled memristor. Acta Physica Sinica, 2015, 64(23): 237303. doi: 10.7498/aps.64.237303
    [7] Shao Shu-Yi, Min Fu-Hong, Wu Xue-Hong, Zhang Xin-Guo. Implementation of a new chaotic system based on field programmable gate array. Acta Physica Sinica, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [8] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [9] Zhu Jin-Rong, Xiang Mei, Hu Jing-Guo. Dynamic behaviors of domain wall in FM/AFM bilayers. Acta Physica Sinica, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [10] Pan Jing, Qi Na, Xue Bing-Bing, Ding Qun. Field programmable gate array-based chaotic encryption system design and hardware realization of cell phone short message. Acta Physica Sinica, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [11] Gao Bo, Yu Xue-Feng, Ren Di-Yuan, Li Yu-Dong, Cui Jiang-Wei, Li Mao-Shun, Li Ming, Wang Yi-Yuan. Research on the total-dose irradiation damage effect for static random access memory-based field programmable gate array. Acta Physica Sinica, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [12] Zhou Wu-Jie, Yu Si-Min. Chaotic digital communication system based on field programmable gate array technology—Design and implementation. Acta Physica Sinica, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [13] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [14] Zhou Wu-Jie, Yu Si-Min. Design and implementation of chaotic generators based on IEEE-754 standard and field programmable gate array technology. Acta Physica Sinica, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
    [15] Yu Jin-Jiang, Cao He-Fei, Xu Hai-Bo, Xu Quan. Nonlinear dynamic behaviors of complex chaotic systems. Acta Physica Sinica, 2006, 55(1): 29-34. doi: 10.7498/aps.55.29
    [16] Yuan Guo-Yong, Yang Shi-Ping, Wang Guang-Rui, Chen Shi-Gang. Dynamics of two FitzHugh-Nagumo systems with delayed coupling. Acta Physica Sinica, 2005, 54(4): 1510-1512. doi: 10.7498/aps.54.1510
    [17] Yu Jin-Jiang, Zhang Ming-Xuan, Xu Hai-Bo. Nonlinear dynamics and control of symmetric chaotic systems*. Acta Physica Sinica, 2004, 53(11): 3701-3705. doi: 10.7498/aps.53.3701
    [18] Hua Cun-Cai, Lu Qi-Shao. . Acta Physica Sinica, 2000, 49(4): 733-740. doi: 10.7498/aps.49.733
    [19] Peng Jian-Hua, Tian Xiao-Jian, Wang Pei-Jin, Chen Xiao-Bing. . Acta Physica Sinica, 1995, 44(2): 177-183. doi: 10.7498/aps.44.177
    [20] YANG YUAN, DAI JIAN-HUA, ZHANG HONG-JUN. THE DYNAMICAL BEHAVIOR OF A DISCRETE MODEL OF OPTICAL BISTABLE SYSTEM. Acta Physica Sinica, 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
Metrics
  • Abstract views:  7776
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2019
  • Accepted Date:  16 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回
Baidu
map