Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of coupling behavior based on series-parallel flux-controlled memristor

Wang Yan Yang Jiu Wang Li-Dan Duan Shu-Kai

Citation:

Research of coupling behavior based on series-parallel flux-controlled memristor

Wang Yan, Yang Jiu, Wang Li-Dan, Duan Shu-Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Memristor is a nanoscale element with low power consumption and high integration, having great potential in applications. A single memristor has rich electrical properties, and its series-parallel circuit exhibits more abundant dynamic behaviors. However, memristors' coupled effects cannot be ignored in high-density integrated environment. Therefore, this paper first deduces the mathematical model of coupled memristor in detail based on the coupled flux controlled memristors. Second, considering the different polarity connection and coupling strength, we discuss the coupled condition of two flux-controlled memristors in series and parallel connections. Then the detailed theoretical analysis is illustrated, and the variation of memristance in terms of voltage, time and flux as well as the relations between voltage and currents are examined via numerical simulations to further explore the influence of coupled effects on the memristive system. At the same time, a graphical user interface of series-parallel coupled circuit based on Matlab is designed. Through this interface, we can adjust the initial value of memristor and coupling coefficient, select different connection modes, obtain corresponding connection diagram and output waveform which intuitively show the dynamic behavior of different parameters directly and provide experimental reference for further study of the circuit design. Furthermore, this paper shows the influence of initial value on the normal working range of memristors in the presence of coupling. From the table 1 it can be easily obtained that when the memristors are connected in the same direction, the range of memristance without coupling is greater than that with coupling. And the situation is opposite when the memristors are connected in different directions. Finally, the hysteresis curve with different coupling coefficients and the change of memristance with time are shown via building the Pspice simulator of coupled memristors, so the coupling effects of memristor is confirmed by circuit simulations. Experimental results reflect that the coupling with the same polarity enhances the change of resistance, and the coupling with different polarity with slow down it. Such dynamical properties can be well utilized in memristive networks and provide a strong theoretical basis for the comprehensive consideration of the design of memristive system.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. [2013]47), the National Natural Science Foundation of China (Grant Nos. 61372139, 61571372, 60972155), the Spring Sunshine Plan Research Project of Ministry of Education of China (Grant No. z2011148), the Technology Foundation for Selected Overseas Chinese Scholars, Ministry of Personnel in China (Grant No. [2012]186), the University Excellent Talents Supporting Foundation of Chongqing, China (Grant No. [2011]65), the University Key Teacher Supporting Foundation of Chongqing, China (Grant No. [2011]65), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. XDJK2014A009, XDJK2013B011).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Syst.I. 18 507

    [2]

    Williams R S 2008 IEEE Spectr. 45 28

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Biolek Z, Biolek D, Biolkova V 2009 Radio. Eng 18 210

    [5]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 3008

    [6]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circ. Syst.I. 58 724

    [7]

    Hu X F, Duan S K, Wang L D, Liao X F 2012 Sci. China Inf. Sci. 55 461

    [8]

    Duan S K, Hu X F Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 55 1446

    [9]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [10]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [11]

    Chua L 2011 Appl. Phy. A 102 765

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett 10 1297

    [13]

    Shin S, Kim K, Kang S M 2013 IEEE Trans. Circ. Syst.I. 60 1241

    [14]

    Wang X B, Chen Y R, Xi H W, Li H 2009 IEEE Elec. Dev. Lett. 30 294

    [15]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Syst.I. 60 211

    [16]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [17]

    Budhathoki R K, Sah M P, Adhikari S P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 2688

    [18]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [19]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys.Sin. 63 128502 (in Chinese)[董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]

    [20]

    Budhathoki R K, Sah M P D, Yang C, Kim H, Chua L O 2014 Int. J. Bifurcat. Chaos 24 1430006

    [21]

    Cai W R, Tetzlaff R 2014 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne VIC, June 1259-1262, 2014

    [22]

    Yu D S, Iu H H C, Liang Y, Fernando T, Chua L O 2015 IEEE Trans. Circ. Syst.I. 62 1607

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Syst.I. 18 507

    [2]

    Williams R S 2008 IEEE Spectr. 45 28

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Biolek Z, Biolek D, Biolkova V 2009 Radio. Eng 18 210

    [5]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 3008

    [6]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circ. Syst.I. 58 724

    [7]

    Hu X F, Duan S K, Wang L D, Liao X F 2012 Sci. China Inf. Sci. 55 461

    [8]

    Duan S K, Hu X F Wang L D, Li C D, Mazumder P 2012 Sci. China Inf. Sci. 55 1446

    [9]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [10]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [11]

    Chua L 2011 Appl. Phy. A 102 765

    [12]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett 10 1297

    [13]

    Shin S, Kim K, Kang S M 2013 IEEE Trans. Circ. Syst.I. 60 1241

    [14]

    Wang X B, Chen Y R, Xi H W, Li H 2009 IEEE Elec. Dev. Lett. 30 294

    [15]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Syst.I. 60 211

    [16]

    Wang L D, Drakakis E, Duan S K, He P F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [17]

    Budhathoki R K, Sah M P, Adhikari S P, Kim H, Chua L O 2013 IEEE Trans. Circ. Syst.I. 60 2688

    [18]

    Yin W H, Wang L D, Duan S K 2013 Appl. Mech. Mater. 284 2485

    [19]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys.Sin. 63 128502 (in Chinese)[董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]

    [20]

    Budhathoki R K, Sah M P D, Yang C, Kim H, Chua L O 2014 Int. J. Bifurcat. Chaos 24 1430006

    [21]

    Cai W R, Tetzlaff R 2014 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne VIC, June 1259-1262, 2014

    [22]

    Yu D S, Iu H H C, Liang Y, Fernando T, Chua L O 2015 IEEE Trans. Circ. Syst.I. 62 1607

  • [1] Jia Mei-Mei, Cao Jia-Wei, Bai Ming-Ming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [2] Wang Meng-Jiao, Yang Chen, He Shao-Bo, Li Zhi-Jun. A novel compound exponential locally active memristor coupled Hopfield neural network. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [3] Chen Kai-Hui, Fan Zhen, Dong Shuai, Li Wen-Jie, Chen Yi-Hong, Tian Guo, Chen De-Yang, Qin Ming-Hui, Zeng Min, Lu Xu-Bing, Zhou Guo-Fu, Gao Xing-Sen, Liu Jun-Ming. Perovskite-phase interfacial intercalated layer-induced performance enhancement in SrFeOx-based memristors. Acta Physica Sinica, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [4] Ding Da-Wei, Lu Xiao-Qi, Hu Yong-Bing, Yang Zong-Li, Wang Wei, Zhang Hong-Wei. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [5] He Bin, He Xiong, Liu Guo-Qiang, Zhu Can, Wang Jia-Fu, Sun Zhi-Gang. Memristive and magnetoresistance effects of SnSe2. Acta Physica Sinica, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [6] Lü Yan-Min, Min Fu-Hong. Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array. Acta Physica Sinica, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [7] Wang Xiao-Yuan, Yu Jun, Wang Guang-Yi. Simulink modeling of memristor, memcapacitor, meminductor and their characteristics analysis. Acta Physica Sinica, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [8] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [9] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [10] Dong Zhe-Kang, Duan Shu-Kai, Hu Xiao-Fang, Wang Li-Dan. Two types of nanoscale nonlinear memristor models and their series-parallel circuits. Acta Physica Sinica, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [11] Hu Feng-Wei, Bao Bo-Cheng, Wu Hua-Gan, Wang Chun-Li. Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics. Acta Physica Sinica, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [12] Hong Qing-Hui, Zeng Yi-Cheng, Li Zhi-Jun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor. Acta Physica Sinica, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [13] Li Xin, Yang Meng-Shi, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. DFT research on the IR spectrum of glycine tryptophan oligopeptides chain. Acta Physica Sinica, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [14] Liang Yan, Yu Dong-Sheng, Chen Hao. A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [15] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [16] Sun Zhong-Hua, Wang Hong-Yan, Wang Hui, Zhang Zhi-Dong, Zhang Zhong-Yue. Effects of size and electric field coupling on the surface plasmon properties of gold nanoring dimer structures. Acta Physica Sinica, 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [17] Zhou Tie-Ge, Song Feng-Bin, Zuo Tao, Gu Jing, Xia Hou-Hai, Hu Ya-Ting, Zhao Xin-Jie, Fang Lan, Yan Shao-Lin. The model of capacitively coupled intrinsic Josephson junction array and its chaotic behavior. Acta Physica Sinica, 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [18] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [19] Peng Lin, Tan Hui-Li, Kong Ling-Jiang, Liu Mu-Ren. A study of coupling effect in cellular automata model of traffic flow for two-l ane with open boundary conditions. Acta Physica Sinica, 2003, 52(12): 3007-3013. doi: 10.7498/aps.52.3007
    [20] DONG ZHENG-CHAO. INTERFACE REFLECTION EFFECTS IN A MAGNETIC MULTILAYERED METALLIC SYSTEM. Acta Physica Sinica, 1999, 48(11): 2116-2124. doi: 10.7498/aps.48.2116
Metrics
  • Abstract views:  6538
  • PDF Downloads:  348
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2015
  • Accepted Date:  26 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map