搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻自激振荡系统的隐藏吸引子及其动力学特性

包涵 包伯成 林毅 王将 武花干

引用本文:
Citation:

忆阻自激振荡系统的隐藏吸引子及其动力学特性

包涵, 包伯成, 林毅, 王将, 武花干

Hidden attractor and its dynamical characteristic in memristive self-oscillating system

Bao Han, Bao Bo-Cheng, Lin Yi, Wang Jiang, Wu Hua-Gan
PDF
导出引用
  • 由压控忆阻替换三维自激振荡系统的线性耦合电阻,实现了一种新型的四维忆阻自激振荡系统. 该系统不存在任何平衡点,但可生成周期、准周期、混沌等隐藏吸引子;特别地,当初始条件不同时,系统出现了不同拓扑结构混沌吸引子或准周期极限环与混沌吸引子的共存现象,以及准周期极限环与多种拓扑结构混沌吸引子的多吸引子现象. 理论分析、数值仿真和硬件实验的结果一致,表明了所提出的忆阻自激振荡系统有着十分丰富而复杂的隐藏动力学特性.
    The classical attractors, defined as self-excited attractors, such as Lorenz attractor, Rssler attractor, Chua's attractor and many other well-known attractors, are all excited from unstable index-2 saddle-foci, namely, an attractor with an attraction basin corresponds to an unstable equilibrium. A new type of attractors, defined as hidden attractors, was first found and reported in 2011, whose attraction basin does not intersect with small neighborhoods of the equilibria of the system. Due to the existences of hidden attractors, some particular dynamical systems associated with line equilibrium, or no equilibrium, or stable equilibrium have attracted much attention recently. Additionally, by introducing memristors into existing oscillating circuits or substituting nonlinear resistors in classical chaotic circuits with memristors, a variety of memristor based chaotic and hyperchaotic circuits are simply established and has been broadly investigated in recent years. Motivated by these two considerations, in this paper, we present a novel memristive system with no equilibrium, from which an interesting and striking phenomenon of coexistence of the behaviors of hidden multiple attractors and the corresponding multistability is perfectly demonstrated by numerical simulations and experimental measurements. According to a newly proposed circuit realization scheme, a new type of four-dimensional memristive self-oscillated system is easily implemented by directly replacing a linear coupling resistor in an existing three-dimensional self-oscillated system circuit with a voltage-controlled memristor. The proposed system has no equilibrium, but can generate various hidden attractors including periodic limit cycle, quasi-periodic limit cycle, chaotic attractor, and coexisting attractors and so on. Based on bifurcation diagram, Lyapunov exponent spectra, and phase portraits, complex hidden dynamics with respect to a system parameter of the memristive self-oscillated system are studied. Specially, when different initial conditions are used, the system displays the coexistence phenomenon of chaotic attractors with different topological structures or quasi-periodic limit cycle and chaotic attractor, as well as the phenomenon of multiple attractors of quasi-periodic limit cycle and chaotic attractors with multiple topological structures. The results imply that some coexisting hidden multiple attractors reflecting the emergences of multistability can be observed in the proposed memristive self-oscillated system, which are well illustrated by several conventional dynamical analysis tools. Based on PSIM circuit simulation model, the memristive self-oscillated system is easily made in at a hardware level on a breadboard and two kinds of dynamical behaviors of coexisting hidden multiple attractors are captured in hardware experiments. Hardware experimental measurements are consistent with numerical simulations, which demonstrates that the proposed memristive self-oscillated system has very abundant and complex hidden dynamical characteristics.
      通信作者: 包伯成, mervinbao@126.com
    • 基金项目: 国家自然科学基金(批准号:51277017)、江苏省高校自然科学研究基金(批准号:15JKB510001)和常州市基础研究计划(批准号:CJ20159026)资助的课题.
      Corresponding author: Bao Bo-Cheng, mervinbao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277017), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15JKB510001), and the Basic Research Foundation of Changzhou, China (Grant No. CJ20159026).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现.  , 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [2] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [3] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究.  , 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性.  , 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [6] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析.  , 2021, (): . doi: 10.7498/aps.70.20211549
    [7] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制.  , 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [8] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性.  , 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [9] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统.  , 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [10] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步.  , 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [11] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究.  , 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [12] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究.  , 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [13] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析.  , 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [14] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析.  , 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [15] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真.  , 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [16] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现.  , 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [17] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析.  , 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [18] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析.  , 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [19] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [20] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制.  , 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
计量
  • 文章访问数:  8407
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-08
  • 修回日期:  2016-06-06
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map