Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Principle and experimental study of self-stability of reflector based on two magneto-optical crystals and two mirrors under effect of temperature and radiation

Zhao Gu-Hao Mao Shao-Jie Zhao Shang-Hong Meng Wen Zhu Jie Zhang Xiao-Qiang Wang Guo-Dong Gu Wen-Yuan

Citation:

Principle and experimental study of self-stability of reflector based on two magneto-optical crystals and two mirrors under effect of temperature and radiation

Zhao Gu-Hao, Mao Shao-Jie, Zhao Shang-Hong, Meng Wen, Zhu Jie, Zhang Xiao-Qiang, Wang Guo-Dong, Gu Wen-Yuan
PDF
HTML
Get Citation
  • Acquisition, tracking and pointing (ATP) is an important subsystem of satellite-based optical communication system. It controls the direction of the beam passing through the mirror, and then completes the alignment and stabilization of intersatellite/satellite-ground light path. As is well known, the ordinary mirror changes the polarization of photons, so the ATP mirrors must be specially processed in quantum communication system and coherent optical communication system. For example, in order to counteract the change of photon polarization caused by the mirror, it is usually necessary to coat the mirror. However, this membrane structure must be tested by the radiation and temperature change from the space environment. A polarization-independent reflector based on two magneto-optical crystals and two mirrors is proposed. This structure does not need any special treatment (such as coating) for the reflector. It can realize polarization-independent reflection at any angle only through the reasonable configuration of the ordinary reflector and 90° rotatory crystal. In addition, it is found that the structure has self-stability, that is, when the polarization characteristics of optical devices change due to environmental change, the overall polarization reflection characteristics of the reflective structure remain unchanged. The polarization equation of reflected light of reflector based on two magneto-optical crystal and two mirrors is derived. The polarization of reflected light under environmental influence is simulated, and the polarization independent reflection self-stability of double-rotating double-reflection structure is found. The polarization-independent self-stabilization of this structure is verified by temperature and radiation experiment. The experimental results show that the average polarization retention of the reflecting light of the reflector based on two magneto-optical crystal and two mirrors can reach 99.77% when the temperature varies from -45 ℃ to 85 ℃. The mirrors and the magneto-optical crystals are irradiated by cobalt 60 with a total dose of 400 Gy, and the average polarization retention of the reflective structure is also 99.35%. The experimental results show that the polarization-independent reflectance can be kept stable for a long time in the space environment where radiation and temperature change dramatically. Relying on this self-stability, the reflector based on two magneto-optical crystals and two mirrors can maintain high polarization-independent reflection capability for a long time in a space environment. This makes it a new option for polarization-preserving reflective components in satellite-based optical communication systems.
      Corresponding author: Zhao Gu-Hao, zghlupin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601497).
    [1]

    Gregory M, Heine F F 2012 Opt. Eng. 51 1202

    [2]

    Moss E B 2012 J. Spacecr. Rockets 5 698

    [3]

    Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [4]

    Takenaka H, Carrascocasado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M 2017 Nat. Photon. 1 31

    [5]

    Kim J, Tapley B D 2002 J. Guid. Control Dyn. 6 1100

    [6]

    Romano M, Agrawal B N 2003 Acta Astronaut. 4 509

    [7]

    Harten G V, Snik F, Keller C U 2009 Publ. Astron. Soc. Pac. 878 377

    [8]

    蒋丽媛, 刘定权, 马冲, 蔡清元, 高凌山 2018 中国光学 4 80

    Jiang L Y, Liu D Q, Ma C, Cai Q Y, Gao L S 2018 Chin. Opt. 4 80

    [9]

    范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈波 2008 57 6494Google Scholar

    Fan X H, Li M, Ni Q L, Liu S J, Wang X G, Chen B 2008 Acta Phys. Sin. 57 6494Google Scholar

    [10]

    王春琴, 张鑫, 张立国, 张如意, 金历群, 孙越强 2018 上海航天 4 80

    Wang C Q, Zhang X, Zhang L G, Zhang R Y, Jin L Q, Sun Y Q 2018 Aerospace Shanghai 4 80

    [11]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordn. Equip. Eng. 5 1

    [12]

    Good E J, Ghent D J, Bulgin C E, Remedios J J 2017 J. Geoph. Res. Atmo. 17 124

    [13]

    赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2012 中国激光 10 236

    Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2012 Chin. J. Las. 10 236

    [14]

    赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2013 62 134201Google Scholar

    Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2013 Acta Phys. Sin. 62 134201Google Scholar

    [15]

    王艳, 严雄伟, 郑建刚 2016 太赫兹科学与电子信息学报 5 811Google Scholar

    Wang Y, Yan X W, Zheng J G 2016 Inf. Elect. Eng. 5 811Google Scholar

    [16]

    Hisatake K, Matsubara I, Maeda K, Fujihara T, Uematsu K 1989 Phys. Status Solidi A 24 5

    [17]

    史萌 2006 博士学位论文(曲阜: 曲阜师范大学)

    Shi M 2006 Ph. D. Dissertation (Qufu: Qufu Normal University) (in Chinese)

  • 图 1  双旋光-双反射结构光路图

    Figure 1.  Optical path diagram of reflection structure based on two magneto-optical crystals and two mirrors.

    图 2  环境影响下的双旋光双反射结构偏振保持度变化(a)垂直和水平偏振特性受影响; (b)相位差受影响

    Figure 2.  Polarization maintaining ofreflection structure based on two magneto-optical crystals and two mirrors: (a) Vertical and horizontal polarization characteristics are affected; (b) phase difference is affected.

    图 3  高低温箱

    Figure 3.  High-low temperature test box.

    图 4  高低温对反射镜和旋光晶体的影响

    Figure 4.  Effects of high-low temperature on mirrors and magneto-optical crystals.

    图 5  高低温-辐射对反射镜和旋光晶体的影响

    Figure 5.  Effects of high-low temperature and radiation on mirrors and magneto-optical crystals

    图 6  高低温影响下的双旋光双反射结构反射光偏振态

    Figure 6.  Polarization of reflecting light of reflector based on two magneto-optical crystals and two mirrors under the effect of high-low temperature.

    图 7  高低温影响下的反射光偏振保持度

    Figure 7.  Polarization retention of the reflecting light under the effect of high-low temperature.

    图 8  辐射和高低温影响下的双旋光双反射结构反射光偏振态

    Figure 8.  Polarization of reflecting light of reflector based on two magneto-optical crystals and two mirrors under the effect of high-low temperature and radiation.

    图 9  辐射和高低温影响下的反射光偏振保持度

    Figure 9.  Polarization retention of the reflecting light under the effect of high-low temperature and radiation.

    Baidu
  • [1]

    Gregory M, Heine F F 2012 Opt. Eng. 51 1202

    [2]

    Moss E B 2012 J. Spacecr. Rockets 5 698

    [3]

    Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [4]

    Takenaka H, Carrascocasado A, Fujiwara M, Kitamura M, Sasaki M, Toyoshima M 2017 Nat. Photon. 1 31

    [5]

    Kim J, Tapley B D 2002 J. Guid. Control Dyn. 6 1100

    [6]

    Romano M, Agrawal B N 2003 Acta Astronaut. 4 509

    [7]

    Harten G V, Snik F, Keller C U 2009 Publ. Astron. Soc. Pac. 878 377

    [8]

    蒋丽媛, 刘定权, 马冲, 蔡清元, 高凌山 2018 中国光学 4 80

    Jiang L Y, Liu D Q, Ma C, Cai Q Y, Gao L S 2018 Chin. Opt. 4 80

    [9]

    范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈波 2008 57 6494Google Scholar

    Fan X H, Li M, Ni Q L, Liu S J, Wang X G, Chen B 2008 Acta Phys. Sin. 57 6494Google Scholar

    [10]

    王春琴, 张鑫, 张立国, 张如意, 金历群, 孙越强 2018 上海航天 4 80

    Wang C Q, Zhang X, Zhang L G, Zhang R Y, Jin L Q, Sun Y Q 2018 Aerospace Shanghai 4 80

    [11]

    Cheng X T, Xu X H, Liang X G 2016 J. Ordn. Equip. Eng. 5 1

    [12]

    Good E J, Ghent D J, Bulgin C E, Remedios J J 2017 J. Geoph. Res. Atmo. 17 124

    [13]

    赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2012 中国激光 10 236

    Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2012 Chin. J. Las. 10 236

    [14]

    赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行 2013 62 134201Google Scholar

    Zhao G H, Zhao S H, Yao Z S, Meng W, Wang X, Zhu Z H 2013 Acta Phys. Sin. 62 134201Google Scholar

    [15]

    王艳, 严雄伟, 郑建刚 2016 太赫兹科学与电子信息学报 5 811Google Scholar

    Wang Y, Yan X W, Zheng J G 2016 Inf. Elect. Eng. 5 811Google Scholar

    [16]

    Hisatake K, Matsubara I, Maeda K, Fujihara T, Uematsu K 1989 Phys. Status Solidi A 24 5

    [17]

    史萌 2006 博士学位论文(曲阜: 曲阜师范大学)

    Shi M 2006 Ph. D. Dissertation (Qufu: Qufu Normal University) (in Chinese)

  • [1] Feng Jiao-Jiao, Duan Mei-Ling, Shan Jing, Wang Ling-Hui, Xue Ting. Polarization properties of partially coherent mixed dislocation beams transmitting in biological tissues. Acta Physica Sinica, 2024, 73(18): 184101. doi: 10.7498/aps.73.20240985
    [2] Polarization free of plasmonic heterodimer based on capped nanostructure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211381
    [3] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [4] Liu Ji-Lin, Chen Zi-Yang, Zhang Lei, Pu Ji-Xiong. Polarization and propagation characteristics of the azimuthally polarized non-diffracting beam. Acta Physica Sinica, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [5] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Qiao Hai-Long, Yang Jun, Zhang Jun-Ping, Menke Nei-Mu-Le. Influence of Raman effect on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [6] Wang Qiang, Guan Bao-Lu, Liu Ke, Shi Guo-Zhu, Liu Xin, Cui Bi-Feng, Han Jun, Li Jian-Jun, Xu Chen. Temperature characteristics of VCSEL with liquid crystal overlay. Acta Physica Sinica, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [7] Ma Jun, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Full-field detection of polarization state based on multiplexing digital holography. Acta Physica Sinica, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [8] Zhao Gu-Hao, Zhao Shang-Hong, Yao Zhou-Shi, Hao Chen-Lu, Meng Wen, Wang Xiang, Zhu Zhi-Hang, Liu Feng. Experimental study on polarization-independent reflector structure based on magneto-optical crystal and two mirrors. Acta Physica Sinica, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [9] Sun Peng, Du Lei, Chen Wen-Hao, He Liang, Zhang Xiao-Fang. A radiation degradation model of metal-oxide-semiconductor field effect transistor. Acta Physica Sinica, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [10] Zhang Xuan-Ni, Zhang Chun-Min. The optical transmission and improvement of flux for the static polarization wind imaging interferometer. Acta Physica Sinica, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [11] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [12] Geng Xi-Zhao, Hasi Wu-Li, Guo Xiang-Yu, Li Xing, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing, Lü Zhi-Wei. Study on measuring the kinematic viscosity of liquid medium based on the energy reflectivity of SBS. Acta Physica Sinica, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [13] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [14] Chen Wei-Hua, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Zhang Tian-Fu, Zhang Xue. A model considering the ionizing radiation effects in MOS structure. Acta Physica Sinica, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [15] Han Yi-Wen. Using quantum tunneling method Hawking radiation of a static black hole horizon with a mass-quadrupole moment is studied. Acta Physica Sinica, 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [16] Guo Guan-Jun, Su Lin, Bi Si-Wen. Polarimetric microwave radiation of wind-roughened sea surfaces. Acta Physica Sinica, 2005, 54(5): 2448-2452. doi: 10.7498/aps.54.2448
    [17] Yang Shu-Zheng. Discussion on the characteristics of the quantumradiation of unstationary and slowly-changing Reissner-Nordstr?m black hole. Acta Physica Sinica, 2004, 53(11): 4007-4014. doi: 10.7498/aps.53.4007
    [18] Wang Chen, Yuan Jing-He, Wang Gui-Ying, Xu Zhi-Zhan. The influence of polarized light on fluorescence emission in total internal refl ection microscopy. Acta Physica Sinica, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [19] Song Tai-Peng, Yao Guo-Zheng. . Acta Physica Sinica, 2002, 51(5): 1144-1148. doi: 10.7498/aps.51.1144
    [20] Su Hui-Min, Zheng Xi Guang, Wang Xia, Xu Jian-Feng, Wang He-Zhou. . Acta Physica Sinica, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
Metrics
  • Abstract views:  6661
  • PDF Downloads:  29
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2019
  • Accepted Date:  15 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map