Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films

Chen Long Chen Cheng-Ke Li Xiao Hu Xiao-Jun

Citation:

Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films

Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun
PDF
HTML
Get Citation
  • In order to increase the oxidation sites for enhancing the Si-V photoluminescence intensity of nanocrytalline diamond films, we prepare nanocrystalline diamond films; these films each are comprised of separated domains and oxidized for different times. Each single domain consists of nanodiamond grains with a size of larger than 100 nm and amorphous carbon. In the gaps between domains of separated domain there is formed a film that allows more sites to contact air to ensure the efficient oxidation of the film. As a result, silicon vacancy photoluminescence intensity of the separated domain forming the film is largely enhanced by about 22.7 times after oxidation. The SEM images and Raman spectra of oxidized samples show that the film contains flower-shaped diamond aggregates, each of which is comprised of radially arranged diamond grains. The mixture of nanodiamond grains and amorphous carbon fills the gaps between diamond petals. These fillers disappear after long-term oxidation, but the diamond petals stay stable. Raman spectra show that the amount of amorphous carbon largely decreases after oxidation, while diamond content apparently rises. Hydrogen is desorbed from the film after short-time oxidation according to Raman spectra, thus the quenching effect on silicon vacancy photoluminescence caused by hydrogen termination of diamond surface state is removed. Diamond petals of large size and nanodiamond grains in the fillers are both silicon vacancy photoluminescence sources of the film; the exposed diamond flats on the surface of unoxidized domains provide limited silicon vacancy photoluminescence for the film. The sufficient exposure of diamond grains after the removal of amorphous carbon leads to the significant enhancement of film’s silicon vacancy photoluminescence. With longer-time oxidation, the photoluminescence of film will slightly decrease due to the disappearance of small-sized nanodiamond grains, but the film photoluminescence almost remains stable in both intensity and property due to the stability of large-sized diamond grains. The film after 140-min oxidation remains photoluminescence enhancement, 8.3 times the photoluminescence of the unoxidized sample. The full width at half maximum of photoluminescence peak declines to merely 5.6-6.0 nm because of diamond petals’ high degree of order, which is advantageous for diamond silicon vacancy photoluminescence.
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504325, 50972129, 50602039), Joint Key Project of National Natural Science Foundation of China (Grant No. U1809210), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004, LY18E020013).
    [1]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photon. 10 631Google Scholar

    [2]

    Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D, Prawer S 2011 Rep. Prog. Phys. 740 076501

    [3]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [4]

    Schröder T, Mouradian S L, Zheng J, Trusheim M E, Walsh M, Chen E H, Li L, Bayn I, Englund D 2016 J. Opt. Soc. Am. B 33 B65Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Muller T, Hepp C, Pingault B, Neu E, Gsell S, Schreck M, Sternschulte H, Steinmuller-Nethl D, Becher C, Atature M 2014 Nat. Commun. 5 3328Google Scholar

    [7]

    Merson T D, Castelletto S, Aharonovich I, Turbic A, Kilpatrick T J, Turnley A M 2013 Opt. Lett. 38 4170Google Scholar

    [8]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [9]

    Aharonovich I 2014 Nat. Photon. 8 818Google Scholar

    [10]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [11]

    Rogers L J, Jahnke K D, Teraji T, Marseglia L, Muller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [12]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [13]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký Š 2018 Appl. Phys. A 124 219

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524Google Scholar

    [15]

    Klauser F, Steinmüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vapor Depos. 16 127Google Scholar

    [16]

    Lin S C, Yeh C J, Kurian J, Dong C L, Niu H, Leou K C, Lin I N 2014 J. Appl. Phys. 116 183701Google Scholar

    [17]

    Wilson J I B, Walton J S, Beamson G 2001 J. Electron Spectrosc. Relat. Phenom. 121 183Google Scholar

    [18]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

    [19]

    Pu J C, Wang S F, Sung J C 2010 J. Alloy. Compd. 489 638Google Scholar

    [20]

    Huang K, Hu X, Xu H, Shen Y, Khomich A 2014 Appl. Surf. Sci. 317 11Google Scholar

    [21]

    Mei Y, Fan D, Lu S, Shen Y, Hu X 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Nimmagadda R R, Joshi A, Hsu W L 1990 J. Mater. Res. 5 2445Google Scholar

    [23]

    Obraztsov A N, Kopylov P G, Chuvilin A L, Savenko N V 2009 Diamond Relat. Mater. 18 1289Google Scholar

    [24]

    Zolotukhin A, Kopylov P G, Ismagilov R R, Obraztsov A N 2010 Diamond Relat. Mater. 19 1007Google Scholar

    [25]

    Hei L F, Zhao Y, Wei J J, Liu J L, Li C M, Lü F X 2017 Int. J. Miner. Metall. Mater. 24 1424Google Scholar

    [26]

    Mildren R P, Butler J E, Rabeau J R 2008 Opt. Express 16 18950Google Scholar

    [27]

    Reilly S, Savitski V G, Liu H, Gu E, Dawson M D, Kemp A J 2015 Opt. Lett. 40 930Google Scholar

    [28]

    Hu X J, Li N 2013 Chin. Phys. Lett. 30 088102Google Scholar

    [29]

    Dychalska A, Fabisiak K, Paprocki K, Makowiecki J, Iskaliyeva A, Szybowicz M 2016 Mater. Des. 112 320Google Scholar

    [30]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93Google Scholar

    [31]

    Prawer S, Nemanich R J 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 2537Google Scholar

    [32]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [33]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [34]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [35]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362 2477Google Scholar

    [36]

    Fecher J, Wormser M, Rosiwal S M 2016 Diamond Relat. Mater. 61 41Google Scholar

    [37]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diamond Relat. Mater. 5 589Google Scholar

  • 图 1  单颗粒层纳米晶金刚石薄膜的表面形貌 (a) OX-0; (b) OX-0; (c) OX-30; (d) OX-30; (e) OX-40; (f) OX-40; (g) OX-130; (h) OX-130; (i) OX-140; (j) OX-140

    Figure 1.  Morphology of separated domains formed nanocrystalline diamond film: (a) OX-0; (b) OX-0; (c) OX-30; (d) OX-30; (e) OX-40; (f) OX-40; (g) OX-130; (h) OX-130; (i) OX-140; (j) OX-140.

    图 2  (a) 572 nm处的金刚石的一阶斯托克斯线; (b)单颗粒层纳米晶金刚石薄膜的硅空位光致发光谱; (c) 738 nm波长强度与572 nm强度比值随时间变化

    Figure 2.  (a) Diamond first Stokes line at 572 nm; (b) SiV photoluminescence spectra of separated domains formed nanocrystalline diamond film; (c) photoluminescence intensity ratio of 738 nm emission and 572 nm emission with different oxidation time.

    图 3  单颗粒层纳米晶金刚石薄膜的硅空位光致发光mapping (a) OX-0; (b) OX-30; (c) OX-40; (d) OX-60; (e) OX-130; (f) OX-140

    Figure 3.  SiV photoluminescence mapping of separated domains formed nanocrystalline diamond film: (a) OX-0; (b) OX-30; (c) OX-40; (d) OX-60; (e) OX-130; (f). OX-140.

    图 4  单颗粒层纳米晶金刚石薄膜的硅空位光致发光强度及半峰宽

    Figure 4.  SiV photoluminescence intensity and full width at half maximum (FWHM) values.

    图 5  (a)不同氧化时间单颗粒层纳米晶金刚石薄膜的拉曼光谱; (b)金刚石含量与It-PA/ISUM和样品氧化时间的关系; (c)金刚石峰位置与半峰宽随氧化时间的变化关系

    Figure 5.  (a) Raman spectra of variety time oxidized separated domains formed nanocrystalline diamond film; (b) diamond content and It-PA/ISUM of films with their oxidation time; (c) diamond peak position and FWHM values of films with their oxidation time.

    Baidu
  • [1]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photon. 10 631Google Scholar

    [2]

    Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D, Prawer S 2011 Rep. Prog. Phys. 740 076501

    [3]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [4]

    Schröder T, Mouradian S L, Zheng J, Trusheim M E, Walsh M, Chen E H, Li L, Bayn I, Englund D 2016 J. Opt. Soc. Am. B 33 B65Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Muller T, Hepp C, Pingault B, Neu E, Gsell S, Schreck M, Sternschulte H, Steinmuller-Nethl D, Becher C, Atature M 2014 Nat. Commun. 5 3328Google Scholar

    [7]

    Merson T D, Castelletto S, Aharonovich I, Turbic A, Kilpatrick T J, Turnley A M 2013 Opt. Lett. 38 4170Google Scholar

    [8]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [9]

    Aharonovich I 2014 Nat. Photon. 8 818Google Scholar

    [10]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [11]

    Rogers L J, Jahnke K D, Teraji T, Marseglia L, Muller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [12]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [13]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký Š 2018 Appl. Phys. A 124 219

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524Google Scholar

    [15]

    Klauser F, Steinmüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vapor Depos. 16 127Google Scholar

    [16]

    Lin S C, Yeh C J, Kurian J, Dong C L, Niu H, Leou K C, Lin I N 2014 J. Appl. Phys. 116 183701Google Scholar

    [17]

    Wilson J I B, Walton J S, Beamson G 2001 J. Electron Spectrosc. Relat. Phenom. 121 183Google Scholar

    [18]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

    [19]

    Pu J C, Wang S F, Sung J C 2010 J. Alloy. Compd. 489 638Google Scholar

    [20]

    Huang K, Hu X, Xu H, Shen Y, Khomich A 2014 Appl. Surf. Sci. 317 11Google Scholar

    [21]

    Mei Y, Fan D, Lu S, Shen Y, Hu X 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Nimmagadda R R, Joshi A, Hsu W L 1990 J. Mater. Res. 5 2445Google Scholar

    [23]

    Obraztsov A N, Kopylov P G, Chuvilin A L, Savenko N V 2009 Diamond Relat. Mater. 18 1289Google Scholar

    [24]

    Zolotukhin A, Kopylov P G, Ismagilov R R, Obraztsov A N 2010 Diamond Relat. Mater. 19 1007Google Scholar

    [25]

    Hei L F, Zhao Y, Wei J J, Liu J L, Li C M, Lü F X 2017 Int. J. Miner. Metall. Mater. 24 1424Google Scholar

    [26]

    Mildren R P, Butler J E, Rabeau J R 2008 Opt. Express 16 18950Google Scholar

    [27]

    Reilly S, Savitski V G, Liu H, Gu E, Dawson M D, Kemp A J 2015 Opt. Lett. 40 930Google Scholar

    [28]

    Hu X J, Li N 2013 Chin. Phys. Lett. 30 088102Google Scholar

    [29]

    Dychalska A, Fabisiak K, Paprocki K, Makowiecki J, Iskaliyeva A, Szybowicz M 2016 Mater. Des. 112 320Google Scholar

    [30]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93Google Scholar

    [31]

    Prawer S, Nemanich R J 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 2537Google Scholar

    [32]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [33]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [34]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [35]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362 2477Google Scholar

    [36]

    Fecher J, Wormser M, Rosiwal S M 2016 Diamond Relat. Mater. 61 41Google Scholar

    [37]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diamond Relat. Mater. 5 589Google Scholar

  • [1] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [2] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [6] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [8] Wang Kai-Yue, Li Zhi-Hong, Tian Yu-Ming, Zhu Yu-Mei, Zhao Yuan-Yuan, Chai Yue-Sheng. Photoluminescence studies of the neutral vacancy defect known as GR1 centre in diamond. Acta Physica Sinica, 2013, 62(6): 067802. doi: 10.7498/aps.62.067802
    [9] Wang Kai-Yue, Li Zhi-Hong, Zhang Bo, Zhu Yu-Mei. Investigation of vibronic structures of optical centres in diamond by photoluminescence spectra. Acta Physica Sinica, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [10] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [11] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [12] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [13] Yao Zhi-Tao, Sun Xin-Rui, Xu Hai-Jun, Jiang Wei-Fen, Xiao Shun-Hua, Li Xin-Jian. The structure and photoluminescence properties of ZnO/silicon nanoporous pillar array. Acta Physica Sinica, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [14] Ma Zhong-Yuan, Huang Xin-Fan, Zhu Da, Li Wei, Chen Kun-Ji, Feng Duan. Photoluminescence from a-Si:H/SiO2 multilayers fabricated using in situ layer by layer plasma oxidation. Acta Physica Sinica, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [15] Xu Da-Yin, Liu Yan-Ping, He Zhi-Wei, Fang Ze-Bo, Liu Xue-Qin, Wang Yin-Yue. The behavior of photoluminescence from SiC:Tb films deposited on porous silicon substrate. Acta Physica Sinica, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [16] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [17] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [18] YUAN FANG-CHENG, RAN GUANG-ZHAO, CHAN YUAN, ZHANG BO-RUI, QIAO YONG-PING, FU JI-SHI, QIN GUO-GANG, MA ZHEN-CHANG, ZONG WAN-HUA. ROOM-TEMPERATURE 1.54μm Er3+ PHOTOLUMINESCENCE FROM Er-DOPED SILICON-RICH SILICON OXIDE FILM GROWN BY MAGNETRON SPUTTERING. Acta Physica Sinica, 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
    [19] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
    [20] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
Metrics
  • Abstract views:  7824
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2019
  • Accepted Date:  10 June 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map