Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic analysis of rumor propagation model based on true information spreader

Zhang Ju-Ping Guo Hao-Ming Jing Wen-Jun Jin Zhen

Citation:

Dynamic analysis of rumor propagation model based on true information spreader

Zhang Ju-Ping, Guo Hao-Ming, Jing Wen-Jun, Jin Zhen
cstr: 32037.14.aps.68.20190191
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In the process of rumor propagation, people who know the truth or judge the truth can spread true information about rumors. Therefore, on the rumor propagation, it is significant to introduce the spreaders who spread true information in the rumor propagation. But the previous studies did not take into consideration the influence of true information spreading on the rumor propagation. In this paper, the susceptible-infective-true-removed (SITR) rumor propagation model with the true information spreader and the forgetting factor of rumors is established. The threshold K0 is obtained by using the method of the next generation matrix. If K0 < 1, the balance between no rumor and no true information spreader is locally asymptotically stable. The existence and stability of two boundary balance (that is, there are rumor spreaders but no true information spreaders, and there are no rumor spreaders but true information spreaders) are proved. The bistable region of two-boundary balance is given. Further, under different conditions we obtain the existence and locally asymptotical stability of positive balance (rumor spreaders and true information spreaders coexist). Finally, the theoretical results are verified by numerical simulations. We find that the initial value of the true information spreaders affects the peak value of the rumor spreaders and the duration of the rumor. The bigger the initial value of the true information spreaders, the smaller the peak value of the rumor spreaders is and the shorter the duration of the rumor is. The initial value of the rumor spreaders affects the peak value of the rumor spreaders, and the time when the rumor spreaders reach the peak value. The larger the initial value of the rumor spreaders, the larger the peak value of the rumor spreaders is and the earlier the peak value appears. But the initial value of the rumor spreaders does not affect the duration of the rumor. Therefore, in the process of rumor propagation, according to mathematical analysis of the rumor propagation model, we find that the rumor spread is a very complicated process. The results of mathematical analysis can provide theoretical basis to control the rumor propagation and reduce the negative effects of rumors.
      Corresponding author: Jin Zhen, jinzhn@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61873154, 11601294) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D121008, 201801D121206).
    [1]

    Daley D J, Kendall D G 1964 Nature 204 1118Google Scholar

    [2]

    Sudbury A 1985 J. Appl. Prob. 22 443Google Scholar

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901Google Scholar

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908Google Scholar

    [5]

    Nekovee M, Moreno Y, Bianconi G, Marsili M 2007 Physica A 374 457Google Scholar

    [6]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [7]

    Zhao L J, Wang J J, Chen Y C, Wang Q, Cheng J J, Cui H X 2012 Physica A 391 2444Google Scholar

    [8]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A 390 2619Google Scholar

    [9]

    Deng S F, Li W 2017 Phys. Rev. E 95 042306

    [10]

    Zan Y L, Wu J L, Li P, Yu Q L 2014 Physica A 405 159Google Scholar

    [11]

    Wang Y Q, Yang X Y, Han Y L, Wang X A 2013 Commun. Theor. Phys. 59 510Google Scholar

    [12]

    Yang L X, Zang T R, Yang X F, Wu Y B, Tang Y Y 2017 arXiv: 1705.10618v1 [cs.SI]

    [13]

    He Z B, Cai Z P, Yu J G, Wang X M, Sun Y C, Li Y S 2017 IEEE. T. Veh. Technol. 66 2789Google Scholar

    [14]

    Huo, Liang’an, Wang L, Song N X, Ma C Y, He B 2017 Physica A 468 855Google Scholar

    [15]

    Zhang Y H, Zhu J J 2018 Physica A 503 862Google Scholar

    [16]

    Xiao Y P, Chen D Q, Wei S H, Li Q, Wang H H, Xu M 2019 Nonlinear Dyn. 95 523Google Scholar

    [17]

    顾亦然, 夏玲玲 2012 61 238701Google Scholar

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701Google Scholar

    [18]

    王辉, 韩江洪, 邓林, 程克勤 2013 62 110505Google Scholar

    Wang H, Han J H, Deng L, Cheng K Q 2013 Acta Phys. Sin. 62 110505Google Scholar

    [19]

    张亚明, 苏妍嫄, 刘海鸥 2017 系统科学与数学 37 1960

    Zhang Y M, Su Y Y, Liu H O 2017 J. Sys. Sci. Math. Scis. 37 1960

    [20]

    万贻平, 张东戈, 任清辉 2015 64 240501Google Scholar

    Wan Y P, Zhang D G, Ren Q H 2015 Acta Phys. Sin. 64 240501Google Scholar

    [21]

    冉茂洁, 刘超, 黄贤英, 刘小洋, 杨宏雨, 张光建 2018 计算机应用 38 3312

    Ran M J, Liu C, Huang X Y, Liu X Y, Yang H Y, Zhang G J 2018 J. Comput. Appl. 38 3312

    [22]

    赵敏, 陈文霞, 宋乾坤 2018 应用数学和力学 39 1400

    Zhao M, Chen W X, Song Q K 2018 Appl. Math. Mech. 39 1400

    [23]

    Driessche P, Watmough J 2002 Math. Biosci. 180 29Google Scholar

    [24]

    Routh E J 1877 A Streatis on the Stability of Given State of Motion (London: Macmillan) pp3−21

    [25]

    Jin Z, Sun G Q, Zhu H P 2014 Math. Biosci. Eng. 11 1295Google Scholar

    [26]

    Yao Y R, Zhang J P 2016 J. Biol. Syst. 24 577Google Scholar

    [27]

    Jing W J, Jin Z, Zhang J P 2018 J. Biol. Dynam. 12 486Google Scholar

  • 图 1  真实信息影响下谣言传播流程图

    Figure 1.  Flow chart of rumor propagation under the influence of true information.

    图 2  $K_1$$K_2$ 的关系图, 参数取值为$\alpha_1=0.6, $$\beta=0.6,\; A=0.2, \;\mu=0.2, \;\theta=0.01, \;\epsilon=0.01$

    Figure 2.  Diagram of $K_1$ and $K_2$. The parameter values are $\alpha_1= 0.6,\; \beta=0.6,\; A=0.2,\; \mu =0.2, \;\theta =0.01,\; \epsilon=0.01 $

    图 3  $K_1$$K_2$关系图($\alpha_1=0.7, \beta=0.9, A=0.2,\ \mu=$$0.2,\; \theta=0.01)$ (a) $\epsilon=0.01$, $\epsilon<(1-\alpha_1)\beta$; (b) $\epsilon=0.3$, $\epsilon>(1-\alpha_1)\beta$

    Figure 3.  Diagram of $K_1$ and $K_2$ ($\alpha_1\!= 0.7,\; \beta\!=0.9,\; A\!=0.2,$ $\mu=0.2,\; \theta=0.01$): (a) $\epsilon=0.01$, $\epsilon<(1-\alpha_1)\beta$; (b) $\epsilon=$ $0.3,\; \epsilon > (1-\alpha_1)\beta$

    图 4  $\alpha_1 = 0.3,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.15$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 4.  When $\alpha_1 = 0.3,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.15$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 5  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.36$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 5.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.36$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 6  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.22$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 6.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.22$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 7  $T(0)$不相同时, 系统(2)的解趋于不同的边界平衡点 (a) I的时间序列图; (b) 时间增加后I 的时间序列图

    Figure 7.  When $T(0)$ is different, the solution of system (2) tends to the different boundary equilibrium: (a) Time series graph of I; (b) time series graph of I after time increment.

    图 8  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.3 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 8.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.3 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 9  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.3,\;\delta = 0.3 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 9.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.3,\;\delta = 0.3 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 10  $ \alpha_1 = 0.5,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.24 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Figure 10.  When $\alpha_1 = 0.5,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.24 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 11  (a)不同真实信息传播者的初始值对谣言传播的影响; (b)不同谣言传播者的初始值对谣言传播的影响; 参数取值 $\alpha_1=0.7$, $\beta=0.9$, $\delta=0.36$, $A=0.2$, $\mu=0.2$, $\theta=0.01$, $\epsilon=0.01$

    Figure 11.  (a) Influence of different initial values of true information spreaders; (b) influence of different initial values of rumor spreaders on the rumor propagation. The parameter values are $\alpha_1=0.7$, $\beta=0.9$, $\delta=0.36$, $A=0.2$, $\mu=0.2$, $\theta=0.01$, $\epsilon=0.01$.

    图 12  (a) T(0)与谣言传播者峰值$I_{\rm {max}}$的散点图; (b) 根据数据点拟合得到的曲线图

    Figure 12.  (a) Scatter plot of T(0) and the peak value $I_{\rm {max}}$ of rumor spreaders; (b) the curve graph of fitting data points.

    表 1  系统(2)平衡点之间的关系

    Table 1.  Relationship table between the equilibria of system (2).

    系统(2)的平衡点
    $ \epsilon< \left( {1 - {\alpha _1}} \right){\rm{\beta }}$${K_2} > {K_1}$${K_2} > \dfrac{{{K_1}\left( {\mu {R_1} + \theta } \right)}}{{\mu + \theta }}$${K_2} < 1$图3(a)中黄色区域${E_0},\;E_1^*$
    ${K_2} > 1 > {K_1}$图3(a)中绿色区域${E_0},\;{E_2},\;E_1^*$
    ${K_1} > 1$图3(a)中紫色区域${E_0},\;{E_1},\;{E_2},\;E_1^*$
    ${K_2} < \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$$\epsilon < \left( {1 - 2{\alpha _1} } \right)\beta + \dfrac{ {\delta \theta } }{\mu },{\varDelta _1} \geqslant 0$图3(a)中蓝色区域${E_0},\;{E_1},\;{E_2},\;E_6^*,\;E_7^*$
    ${K_2} < {K_1}$${K_1} < 1$图3(a)中橙色区域$E_0$
    ${K_1} > 1 > {K_2}$图3(a)中红色区域$E_0,\;E_1$
    ${K_1} > {K_2} > 1$图3(a)中空白区域$E_0,\;E_1,\;E_2$
    $\epsilon > \left( {1 - {\alpha _1}} \right){\rm{\beta }}$${K_2} > {K_{1,}}$${K_2} > \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$${K_2} < 1$图3(b)中黄色区域$E_0,\;E_2^*$
    ${K_2} > 1 > {K_1}$图3(b)中绿色区域$E_0,\;E_2,\;E_2^*$
    ${K_1} > 1$图3(b)中紫色区域$E_0,\;E_1,\;E_2,\;E_2^*$
    $K_2<K_1$$K_1<1$图3(b)中橙色区域$E_0$
    $K_1>1>K_2$图3(b)中红色区域$E_0,\;E_1$
    $1 < {K_2} < \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$图3(b)中空白区域$E_0,\;E_1,\;E_2$
    DownLoad: CSV
    Baidu
  • [1]

    Daley D J, Kendall D G 1964 Nature 204 1118Google Scholar

    [2]

    Sudbury A 1985 J. Appl. Prob. 22 443Google Scholar

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901Google Scholar

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908Google Scholar

    [5]

    Nekovee M, Moreno Y, Bianconi G, Marsili M 2007 Physica A 374 457Google Scholar

    [6]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [7]

    Zhao L J, Wang J J, Chen Y C, Wang Q, Cheng J J, Cui H X 2012 Physica A 391 2444Google Scholar

    [8]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A 390 2619Google Scholar

    [9]

    Deng S F, Li W 2017 Phys. Rev. E 95 042306

    [10]

    Zan Y L, Wu J L, Li P, Yu Q L 2014 Physica A 405 159Google Scholar

    [11]

    Wang Y Q, Yang X Y, Han Y L, Wang X A 2013 Commun. Theor. Phys. 59 510Google Scholar

    [12]

    Yang L X, Zang T R, Yang X F, Wu Y B, Tang Y Y 2017 arXiv: 1705.10618v1 [cs.SI]

    [13]

    He Z B, Cai Z P, Yu J G, Wang X M, Sun Y C, Li Y S 2017 IEEE. T. Veh. Technol. 66 2789Google Scholar

    [14]

    Huo, Liang’an, Wang L, Song N X, Ma C Y, He B 2017 Physica A 468 855Google Scholar

    [15]

    Zhang Y H, Zhu J J 2018 Physica A 503 862Google Scholar

    [16]

    Xiao Y P, Chen D Q, Wei S H, Li Q, Wang H H, Xu M 2019 Nonlinear Dyn. 95 523Google Scholar

    [17]

    顾亦然, 夏玲玲 2012 61 238701Google Scholar

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701Google Scholar

    [18]

    王辉, 韩江洪, 邓林, 程克勤 2013 62 110505Google Scholar

    Wang H, Han J H, Deng L, Cheng K Q 2013 Acta Phys. Sin. 62 110505Google Scholar

    [19]

    张亚明, 苏妍嫄, 刘海鸥 2017 系统科学与数学 37 1960

    Zhang Y M, Su Y Y, Liu H O 2017 J. Sys. Sci. Math. Scis. 37 1960

    [20]

    万贻平, 张东戈, 任清辉 2015 64 240501Google Scholar

    Wan Y P, Zhang D G, Ren Q H 2015 Acta Phys. Sin. 64 240501Google Scholar

    [21]

    冉茂洁, 刘超, 黄贤英, 刘小洋, 杨宏雨, 张光建 2018 计算机应用 38 3312

    Ran M J, Liu C, Huang X Y, Liu X Y, Yang H Y, Zhang G J 2018 J. Comput. Appl. 38 3312

    [22]

    赵敏, 陈文霞, 宋乾坤 2018 应用数学和力学 39 1400

    Zhao M, Chen W X, Song Q K 2018 Appl. Math. Mech. 39 1400

    [23]

    Driessche P, Watmough J 2002 Math. Biosci. 180 29Google Scholar

    [24]

    Routh E J 1877 A Streatis on the Stability of Given State of Motion (London: Macmillan) pp3−21

    [25]

    Jin Z, Sun G Q, Zhu H P 2014 Math. Biosci. Eng. 11 1295Google Scholar

    [26]

    Yao Y R, Zhang J P 2016 J. Biol. Syst. 24 577Google Scholar

    [27]

    Jing W J, Jin Z, Zhang J P 2018 J. Biol. Dynam. 12 486Google Scholar

Metrics
  • Abstract views:  17717
  • PDF Downloads:  321
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2019
  • Accepted Date:  05 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019
  • /

    返回文章
    返回
    Baidu
    map