Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition

Wu Bu-Jun Lin Dong-Xu Li Zheng Cheng Zhen-Ping Li Xin Chen Ke Shi Ting-Ting Xie Wei-Guang Liu Peng-Yi

Citation:

Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition

Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi
PDF
HTML
Get Citation
  • Organometal halide perovskite is one of the most promising materials for high efficient thin-film solar cell. Solution fabrication process shows that the recorded power conversion efficiency (PCE) is 23.7%, however, large scale fabrication suffers the inevitable toxic solvent, preventing it from implementing the green commercialization. As one of the matured large-scale fabrication techniques, the vapor deposition is recently found to promise the green fabrication of perovskite thin film without toxic solvent. However, the PCE based on vapor deposition is considerably lower than that based on solution fabrication because of ineffective regulation methods of the perovskite films. So, there is intensive requirement for optimizing the growth of perovskite in vapor deposition for improving PCE, especially, developing a kind of quality regulation method of the perovskite films. In this study, we provide a method of adjusting grain size in vapor deposition method. The grain size optimization of MAPbI3 films is realized by simply modulating the reaction temperature between PbI2 films and MAI vapor. We set the reaction temperature to be 140 ℃, 160 ℃, 180 ℃ and 200 ℃ separately and establish the relationship between reaction time and grain size during the complete conversion of PbI2 film into MAPbI3 film. We find that the average grain size of the film increases first with growth temperature increasing from 140 ℃ to 180 ℃ and then decrease at 200 ℃, giving an average grain size of 0.81 ${\text{μm}}$ and a largest grain size of about 2 ${\text{μm}}$ at 180 ℃. The defect density of perovskite film is deduced from the space charge limited current model, showing that it decreases from 5.90 × 1016 cm–3 at 140 ℃ to 2.66 × 1016 cm–3 at 180 ℃. Photovoltaic devices with structure FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au are fabricated to demonstrate the performance. It is found that the devices with an active area of 0.045 cm2 show that with the increase of grain size, the average PCE increases from 14.00% to 17.42%, and the best device shows that its PCE is 17.80% with 4.04% hysteresis index. To show the possibility of scaling up, we fabricate a uniform perovskite thin film with an area of about 72 cm2, and a device with an active area of 1 cm2, which gives a PCE of 13.17% in reverse scan. In summary, our research provides a method of regulating the grain size for the vapor deposition, which can improve device performance by reducing the trap density in perovskite film for suppressing the carrier recombination in grain boundary. Meanwhile, we prepare high performance devices and large area thin films, showing their potential in large area device fabrication and applications.
      Corresponding author: Xie Wei-Guang, wgxie@email.jnu.edu.cn ; Liu Peng-Yi, tlpy@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674070, 11574119, 11804117) and the Fundamental Research Funds for the Central Universities, China (Grants No. 21618313).
    [1]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Sicence 358 739Google Scholar

    [6]

    吴存存, 孙伟海, 陈志坚, 肖立新 2017 科学通报 62 1457

    Wu C C, Sun W H, Chen Z J, Xiao L X 2017 Chin. Sci. Bull. 62 1457

    [7]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [8]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [9]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [10]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [11]

    Hsiao S Y, Lin H L, Lee W H, Tsai W L, Chiang K M, Liao W Y, Zheng C, Wu R Z, Chen C Y, Lin H W 2016 Adv. Mater. 28 7013Google Scholar

    [12]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [13]

    Long M Z, Zhang T K, Liu M Z, Chen Z F, Wang C, Xie W G, Xie F Y, Chen J, Li G, Xu J B 2018 Adv. Mater. 30 1801562Google Scholar

    [14]

    Tong G Q, Li H, Li G P, Zhang T, Li C D, Yu L W, Xu J, Jiang Y, Shi Y, Chen K J 2018 Nano Energy 48 536Google Scholar

    [15]

    Zhu X J, Yang D, Yang R X, Yang B, Yang Z, Ren X D, Zhang J, Niu J Z, Feng J S, Liu S Z 2017 Nanoscale 9 12316Google Scholar

    [16]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [17]

    Seok S I, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [18]

    Li X, Chen C C, Cai M, Hua X, Xie F, Liu X, Hua J, Long Y T, Tian H, Han L 2018 Adv. Energy Mater. 8 1800715Google Scholar

    [19]

    Han Q, Bai Y, Liu J, Du K Z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [20]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lü S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [21]

    杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义 2018 67 098801Google Scholar

    Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G, Liu P Y 2018 Acta Phys. Sin. 67 098801Google Scholar

    [22]

    Tavakoli M M, Simchi A, Mo X, Fan Z 2017 Mater. Chem. Front. 1 1520Google Scholar

    [23]

    Yue S Z, Liu K, Xu R, Li M C, Azam M, Ren K, Liu J, Sun Y, Wang Z J, Cao D W, Yan X H, Qu S C, Lei Y, Wang Z G 2017 Energy Environ. Sci. 10 2570

    [24]

    Zhang T K, Long M Z, Qin M C, Lu X H, Chen S, Xie F Y, Gong L, Chen J, Chu M, Miao Q, Chen Z F, Xu W Y, Liu P Y, Xie W G, Xu J B 2018 Joule 2 1Google Scholar

    [25]

    Zhang T K, Long M Z, Yan K Y, Qin M C, Lu X H, Zeng X L, Cheng C M, Wong K S, Liu P Y, Xie W G, Xu J B 2017 Adv. Energy Mater. 7 1700118Google Scholar

    [26]

    Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J, Huang J S 2016 Energy Environ. Sci. 9 1752Google Scholar

  • 图 1  钙钛矿薄膜的气相制备流程及效果 (a)两步钙钛矿薄膜气相制备流程示意图; (b)PbI2与MAI气体反应示意图; (c)器件SEM截面图

    Figure 1.  Vapor growth of perovskite film: (a) Schematic growth processes of two-step vapor growth of perovskite films; (b) reaction schematic between the PbI2 structure and the MAI molecule; (c) the cross-sectional morphology of the as-prepared device.

    图 2  不同反应温度下钙钛矿薄膜的表征 (a)薄膜的XRD图谱; (b)不同反应温度下PbI2向MAPbI3完全转化所需的时间; (c)薄膜的吸收图谱

    Figure 2.  (a) The XRD patterns; (b) reaction time for fully conversion of PbI2 to MAPbI3 under different reaction temperature; (c) UV-vis spectra of perovskite films synthesized under different temperature.

    图 3  温度对钙钛矿薄膜形态的影响 (a)—(d)反应温度分别为140 ℃, 160 ℃, 180 ℃以及200 ℃时制备的钙钛矿的SEM形貌图(白色线段长度为1 ${\text{μm}}$); (e)不同反应温度下的钙钛矿薄膜晶体粒径统计; (f)气相法制备面积约72 cm2的MAPbI3薄膜

    Figure 3.  Reaction temperature effect on the morphology of perovskite film: (a)–(d) SEM images of perovskite films with reaction temperature of (a) 140 ℃, (b) 160 ℃, (c) 180 ℃ and (d) 200 ℃ (the scale bars in the SEM images are 1 ${\text{μm}}$); (e) statistics of grain size under different reaction temperature; (f) as prepared MAPbI3 film with area about 72 cm2.

    图 4  钙钛矿薄膜的缺陷密度测试 (a) 140 ℃; (b) 160 ℃; (c) 180 ℃; (d) 200 ℃

    Figure 4.  Trap density measurement in perovskite synthesized under different temperature: (a) 140 ℃; (b) 160 ℃; (c) 180 ℃ and (d) 200 ℃.

    图 5  钙钛矿光伏器件性能 (a)标准光照下面积为0.045 cm2器件的J-V曲线; (b)多组器件效率的统计结果; (c)面积为0.045 cm2器件180 ℃下制备的器件回滞曲线; (d)面积为0.045 cm2器件140 ℃下制备的器件回滞曲线; (e)面积为1 cm2 器件180 ℃下制备的器件J-V曲线; (f) 1 cm2 器件的光学图片

    Figure 5.  Device performance of perovskite photovoltaic devices: (a) 0.045 cm2 device reverse J-V curves under 1 Sun AM 1.5 G; (b) statistical distribution of PCE; reverse and forward J-V curves of devices (0.045 cm2) grown at (c) 180 ℃ and (d) 140 ℃; (e) reverse and forward J-V curves of device (1 cm2) grown at 180 ℃ and (f) corresponding optical image.

    表 1  不同反应温度的器件具体性能参数以及统计值

    Table 1.  Characteristic parameters and statistical result of PSCs.

    Sythesis temperature Jsc/mA·cm-2 Voc/V FF/% Champion PCE/% Average PCE/%
    140 22.04 0.99 66.31 14.47 14.00
    160 22.25 1 70.51 15.69 14.93
    180 23.47 1.02 74.35 17.80 17.42
    200 22.75 1.03 70.88 16.61 16.13
    DownLoad: CSV
    Baidu
  • [1]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Sicence 358 739Google Scholar

    [6]

    吴存存, 孙伟海, 陈志坚, 肖立新 2017 科学通报 62 1457

    Wu C C, Sun W H, Chen Z J, Xiao L X 2017 Chin. Sci. Bull. 62 1457

    [7]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [8]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [9]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [10]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [11]

    Hsiao S Y, Lin H L, Lee W H, Tsai W L, Chiang K M, Liao W Y, Zheng C, Wu R Z, Chen C Y, Lin H W 2016 Adv. Mater. 28 7013Google Scholar

    [12]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [13]

    Long M Z, Zhang T K, Liu M Z, Chen Z F, Wang C, Xie W G, Xie F Y, Chen J, Li G, Xu J B 2018 Adv. Mater. 30 1801562Google Scholar

    [14]

    Tong G Q, Li H, Li G P, Zhang T, Li C D, Yu L W, Xu J, Jiang Y, Shi Y, Chen K J 2018 Nano Energy 48 536Google Scholar

    [15]

    Zhu X J, Yang D, Yang R X, Yang B, Yang Z, Ren X D, Zhang J, Niu J Z, Feng J S, Liu S Z 2017 Nanoscale 9 12316Google Scholar

    [16]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [17]

    Seok S I, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [18]

    Li X, Chen C C, Cai M, Hua X, Xie F, Liu X, Hua J, Long Y T, Tian H, Han L 2018 Adv. Energy Mater. 8 1800715Google Scholar

    [19]

    Han Q, Bai Y, Liu J, Du K Z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [20]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lü S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [21]

    杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义 2018 67 098801Google Scholar

    Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G, Liu P Y 2018 Acta Phys. Sin. 67 098801Google Scholar

    [22]

    Tavakoli M M, Simchi A, Mo X, Fan Z 2017 Mater. Chem. Front. 1 1520Google Scholar

    [23]

    Yue S Z, Liu K, Xu R, Li M C, Azam M, Ren K, Liu J, Sun Y, Wang Z J, Cao D W, Yan X H, Qu S C, Lei Y, Wang Z G 2017 Energy Environ. Sci. 10 2570

    [24]

    Zhang T K, Long M Z, Qin M C, Lu X H, Chen S, Xie F Y, Gong L, Chen J, Chu M, Miao Q, Chen Z F, Xu W Y, Liu P Y, Xie W G, Xu J B 2018 Joule 2 1Google Scholar

    [25]

    Zhang T K, Long M Z, Yan K Y, Qin M C, Lu X H, Zeng X L, Cheng C M, Wong K S, Liu P Y, Xie W G, Xu J B 2017 Adv. Energy Mater. 7 1700118Google Scholar

    [26]

    Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J, Huang J S 2016 Energy Environ. Sci. 9 1752Google Scholar

  • [1] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [6] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [7] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [8] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [9] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [10] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [11] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [12] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [13] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [14] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [15] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [16] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [17] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [20] Zheng Qing, Zhao Xiao-Peng, Li Ming-Ming, Zhao Jing. Regulating ability of defects on the negative refraction of left-handed metamaterials. Acta Physica Sinica, 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
Metrics
  • Abstract views:  11907
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2018
  • Accepted Date:  25 January 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回
Baidu
map