Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental progress of quantum computation based on trapped single neutral atoms

Xu Peng He Xiao-Dong Liu Min Wang Jin Zhan Ming-Sheng

Citation:

Experimental progress of quantum computation based on trapped single neutral atoms

Xu Peng, He Xiao-Dong, Liu Min, Wang Jin, Zhan Ming-Sheng
PDF
HTML
Get Citation
  • As an important candidate for quantum simulation and quantum computation, a microscopic array of single atoms confined in optical dipole traps is advantageous in controlled interaction, long coherence time, and scalability of providing thousands of qubits in a small footprint of less than 1 mm2. Recently, several breakthroughs have greatly advanced the applications of neutral atom system in quantum simulation and quantum computation, such as atom-by-atom assembling of defect-free arbitrary atomic arrays, single qubit addressing and manipulating in two-dimensional and three-dimensional arrays, extending coherence time of atomic qubits, controlled-NOT (C-NOT) gate based on Rydberg interactions, high fidelity readout, etc.In this paper, the experimental progress of quantum computation based on trapped single neutral atoms is reviewed, along with two contributions done by single atom group in Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences. First, a magic-intensity trapping technique is developed and used to mitigate the detrimental decoherence effects which are induced by light shift and substantially enhance the coherence time to 225 ms which is 100 times as large as our previous coherence time thus amplifying the ratio between coherence time and single qubit operation time to 105. Second, the difference in resonant frequency between the two atoms of different isotopes is used to avoid crosstalking between individually addressing and manipulating nearby atoms. Based on this heteronuclear single atom system, the heteronuclear C-NOT quantum gate and entanglement of an Rb-85 atom and an Rb-87 atom are demonstrated via Rydberg blockade for the first time. These results will trigger the quests for new protocols and schemes to use the double species for quantum computation with neutral atoms. In the end, the challenge and outlook for further developing the neutral atom system in quantum simulation and quantum computation are also reviewed.
      Corresponding author: Zhan Ming-Sheng, mszhan@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302800, 2017YFA0304501), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB21010100), and the National Natural Science Foundation of China (Grant Nos. 11674361, 11774389).
    [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [2]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [3]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [4]

    O’Brien J L 2007 Science 318 1567Google Scholar

    [5]

    Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A, Dzurak A S 2015 Nature 526 410Google Scholar

    [6]

    Childress L, Hanson R 2013 MRS Bulletin 38 134Google Scholar

    [7]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [8]

    周正威, 陈巍, 孙方稳, 项国勇, 李传锋 2012 科学通报 57 1498Google Scholar

    Zhou Z W, Chen W, Sun F W, Xiang G Y, Li C F 2012 Chin. Sci. Bull. 57 1498Google Scholar

    [9]

    Wu T Y, Kumar A, Mejia F G, Weiss D S 2018 arxiv: 1809.09197 [physics.atom-ph]

    [10]

    Saffman M 2018 Nat. Sci. Rev. nwy088Google Scholar

    [11]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [12]

    Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [13]

    Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [14]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [15]

    Wang Y, Kumar A, Wu T Y, Weiss D S 2016 Science 352 1562Google Scholar

    [16]

    Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L, Saffman M 2015 Phys. Rev. Lett. 114 100503Google Scholar

    [17]

    Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A, Zhan M S 2016 Phys. Rev. Lett. 117 123201Google Scholar

    [18]

    Li G, Zhang S, Isenhower L, Maller K, Saffman M 2012 Opt. Lett. 37 851Google Scholar

    [19]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [20]

    Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [21]

    Kwon M, Ebert M F, Walker T G, Saffman M 2017 Phys. Rev. Lett. 119 180504Google Scholar

    [22]

    Martinez-Dorantes M, Alt W, Gallego J, Ghosh S, Ratschbacher L, Völzke Y, Meschede D 2017 Phys. Rev. Lett. 119 180503Google Scholar

    [23]

    DiVincenzo D P 2000 Fortschr. Phys. 48 771Google Scholar

    [24]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [25]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024Google Scholar

    [26]

    Kim H, Lee W, Lee H, Jo H, Song Y, Ahn J 2016 Nat. Commun. 7 13317Google Scholar

    [27]

    Kumar A, Wu T Y, Giraldo F, Weiss D S 2018 Nature 561 83Google Scholar

    [28]

    Walker T G, Saffman M 2012 Adv. At. Mol. Opt. Phys. 61 81Google Scholar

    [29]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2005 Phys. Rev. A 72 023406Google Scholar

    [30]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [31]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001Google Scholar

    [32]

    Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2004 Phys. Rev. Lett. 93 150501Google Scholar

    [33]

    Bakr W S, Gillen J T, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [34]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [35]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [36]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schauẞ P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319Google Scholar

    [37]

    Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, Wineland D J 2008 Phys. Rev. A 77 012307Google Scholar

    [38]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [39]

    Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar

    [40]

    Jaksch D, Briegel H J, Cirac J I, Gardiner C W, Zoller P 1999 Phys. Rev. Lett. 82 1975Google Scholar

    [41]

    Strauch F W, Edwards M, Tiesinga E, Williams C, Clark C W 2008 Phys. Rev. A 77 050304Google Scholar

    [42]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Nature 425 937Google Scholar

    [43]

    Anderlini M, Lee P J, Brown B L, Strabley J S, Phillips W D, Porto J V 2007 Nature 448 452Google Scholar

    [44]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014Google Scholar

    [45]

    Thompson J D, Tiecke T G, Zibrov A S, Vuletic′ V, Lukin M D 2013 Phys. Rev. Lett. 110 133001Google Scholar

    [46]

    Kaufman A M, Lester B J, Foss-Feig M, Wall M L, Rey A M, Regal C A 2015 Nature 527 208Google Scholar

    [47]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [48]

    Petrosyan D, Motzoi F, Saffman M, MØlmer K 2017 Phys. Rev. A 96 042306Google Scholar

    [49]

    Keating T, Cook R L, Hankin A M, Jau Y Y, Biedermann G W, Deutsch I H 2015 Phys. Rev. A 91 012337Google Scholar

    [50]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [51]

    Gaëtan A, Miroshnychenko M, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [52]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko J, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [53]

    Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [54]

    Maller K M, Lichtman M T, Xia T, Sun Y, Piotrowicz M J, Carr A W, Isenhower L, Saffman M 2015 Phys. Rev. A 92 022336Google Scholar

    [55]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [56]

    Fuhrmanek A, Bourgain R, Sortais Y R P, Browaeys A 2011 Phys. Rev. Lett. 106 133003Google Scholar

    [57]

    Gibbons M J, Hamley C D, Shi C Y, Chapman M S 2011 Phys. Rev. Lett. 106 133002Google Scholar

    [58]

    He J, Yang B D, Zhang T C, Wang J M 2011 Phys. Scr. 84 025302Google Scholar

    [59]

    Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783Google Scholar

    [60]

    Yu S, He X D, Xu P, Liu M, Wang J, Zhan M S 2012 Chin. Sci. Bull. 57 1931Google Scholar

    [61]

    詹明生 2015 物理 44 518Google Scholar

    Zhan M S 2015 Physics 44 518Google Scholar

    [62]

    Yu S, Xu P, He X D, Liu M, Wang J, Zhan M S 2013 Opt. Express 21 32130Google Scholar

    [63]

    Yu S, Xu P, Liu M, He X D, Wang J, Zhan M S 2014 Phys. Rev. A 90 062335Google Scholar

    [64]

    Derevianko A 2010 Phys. Rev. A 81 051606Google Scholar

    [65]

    Lundblad N, Schlosser M, Porto J V 2010 Phys. Rev. A 81 031611Google Scholar

    [66]

    Carr A W, Saffman M 2016 Phys. Rev. Lett. 117 150801Google Scholar

    [67]

    Beterov I I, Saffman M 2015 Phys. Rev. A 92 042710Google Scholar

    [68]

    Auger J M, Bergamini S, Browne D E 2017 Phys. Rev. A 96 052320Google Scholar

    [69]

    Tan T R, Gaebler J P, Lin Y, Wan Y, Bowler T, Leibfried D, Wineland D J 2015 Nature 528 380Google Scholar

    [70]

    Ballance C J, Schäfer V M, Home J P, Szwer D J, Webster S C, Allcock D T, Linke N M, Harty T P, Aude Craik D P, Stacey D N, Steane A M, Lucas D M 2015 Nature 528 384Google Scholar

    [71]

    Weimer H, Müller M, Lesanovsky I, Zoller P, Büchler H P 2010 Nat. Phys. 6 382Google Scholar

    [72]

    Qian J, Zhang L, Zhai J J, Zhang W P 2015 Phys. Rev. A 92 063407Google Scholar

    [73]

    Wang J Y, Bai J D, He J, Wang J M 2016 J. Opt. Soc. Am. B 33 2020Google Scholar

    [74]

    Naber J B, Vos J, Rengelink R J, Nusselder R J, Davtyan D 2016 Eur. Phys. J. Spec. Top. 225 2785Google Scholar

    [75]

    Legaie R, Picken C J, Pritchard J D 2018 J. Opt. Soc. Am. B 35 892Google Scholar

    [76]

    Zeng Y, Wang K P, Lui Y Y, He X D, Liu M, Xu P, Wang J, Zhan M S 2018 Journal of the Optical Society of America B 35 454Google Scholar

    [77]

    Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [78]

    Beguin L 2013 Ph. D. Dissertation (Palaiseau: Institut d’Optique Graduate School)

    [79]

    Sedlacek J A, Kim E, Rittenhouse S T, Weck P F, Sadeghpour H R, Shaffer J P 2016 Phys. Rev. Lett. 116 133201Google Scholar

    [80]

    Xu P, Yang J H, Liu M, He X D, Zeng Y, Wang K P, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2015 Nat. Commun. 6 7803Google Scholar

    [81]

    de Léséleuc S, Barredo D, Lienhard V, Browaeys A, Lahaye T 2018 Phys. Rev. A 97 053803Google Scholar

    [82]

    Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2018 Phys. Rev. Lett. 121 123603Google Scholar

    [83]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [84]

    Chen Z Y, Zhou Q, Xue C, Yang X, Guo G C, Guo G P 2018 Sci. Bull. 63 964Google Scholar

    [85]

    Bravyi1 S, Gosset D, König R 2018 Science 362 308Google Scholar

    [86]

    Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J, Zhan M S 2018 Phys. Rev. Lett. 121 240501Google Scholar

    [87]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T and Browaeys A 2016 Nature 534 667Google Scholar

    [88]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [89]

    Schauss P 2018 Quantum Sci. Technol. 3 023001Google Scholar

    [90]

    Das S, Grankin A, Iakoupov I, Brion E, Borregaard J, Boddeda R, Usmani I, Ourjoumtsev A, Grangier P, Sørensen A S 2016 Phys. Rev. A 93 040303(R)Google Scholar

    [91]

    Wade A C J, Mattioli M, Mølmer K 2016 Phys. Rev. A 94 053830Google Scholar

    [92]

    Sun Y, Chen P X 2018 Optica 5 1492Google Scholar

  • 图 1  中性单原子量子计算的概念架构

    Figure 1.  Conceptual architecture for a neutral atom quantum computer.

    图 2  远红失谐光聚焦形成的偶极阱和偶极阱中收集的单原子荧光信号

    Figure 2.  The optical dipole trap formed by strongly focusing far red-detuned laser. The fluorescence of single atoms trapped by the dipole trap.

    图 3  $ ^{87}{\rm Rb} $原子能级和相关的冷却光$ I_{\rm cool} $、回泵光$ I_{\rm rep} $、态制备光$ I_{\rm pum} $和态探测光$ I_{\rm prob} $对应的跃迁(量子比特的$ |0\rangle $态和$ |1\rangle $态编码在 $ F=1 $,$ m_F $ = 0和$ F=2 $, $ m_F=0 $上)

    Figure 3.  The energy levels and lasers used for cooling, repumpiup ng, optical pumpiup ng, and state detection of $ ^{87}{\rm Rb} $. The ground hyperfine states of $ F=1 $, $ m_F=0 $ and $ F=2 $, $ m_F=0 $ are used for encoding the qubit.

    图 4  (a)超极化率不可忽略情况下, 原子量子比特的微分光频移在不同磁场下随偶极阱势深的变化; (b)原子量子比特相干时间在不同偶极阱势深下的实验值, 蓝色实线为理论值; 内插图显示了阱深为$ U_{\rm M} $时, 通过拟合Ramsey条纹的对比度得到相干时间为$ \tau= (225 \pm 21) $ ms[17]

    Figure 4.  (a) In the presence of hyperpolarizability, the differential light shift (DLS) of a qubit in the circularly polarized trap is measured as a function of trap depths at various magnetic field strengths; (b) coherence time $ \tau $ and its dependence on normalized ratios $ U/U_{\rm M} $ obtained from experiment. The solid blue line is the theoretical curve. A coherence time is extracted from a decay time of the envelope of Ramsey visibility, as shown as in the inset. At $ U_a= U_{\rm M} $, $ \tau= (225 \pm 21) $ ms[17].

    图 5  (a)原子量子比特相干转移的实验装置示意图(Trap 1是可移动阱, 其在焦平面上的位置由2D声光偏转器控制; Trap 2是静止阱; 两阱的偏振可以通过液晶相位片(Thorlabs LCR-1-NIR)实时控制); (b) 原子量子比特在两阱中不转移(黑色方块)和转移(红色圆点)时的Ramsey条纹(实验数据中每个点是100多次实验的平均值; 通过衰减的正弦函数拟合(实线部分), 可以得到静止量子比特和转移量子比特的相干时间分别是(206 $ \pm $ 69) ms和(205 $ \pm $ 74) ms[17]

    Figure 5.  (a) Experimental setup for coherent transfer of atomic qubit. Trap 1 is a movable trap which can be shiftted in two orthogonal diretions by an AOD. Trap 2 is a static one. Both of their polarizations can be actively controlled by a liquid crystal retarder (LCR). (b) Measured Ramsey signals for single static qubits (black squares) and single mobile qubits (red dots) at $ B = 3.115 $ G. Every point is an average over 100 experimental runs. The solid curves are fits to the damped sinusoidal function, with coherence times of static qubits and mobile qubits are (206 $ \pm $ 69) ms and (205 $ \pm $ 74) ms, respectively[17].

    图 6  (a) $ ^{85}{\rm Rb} $$ ^{87}{\rm Rb} $的能级及相应的激光; (b) 实验光路示意图; (c)$ ^{87}{\rm Rb} $原子在$ |\!\!\uparrow\rangle $$ |r\rangle $态间的相干Rabi振荡; 里德伯态激发光同时作用到$ ^{85} {\rm Rb}$, 由于频率的差别, $ ^{85}{\rm Rb} $没有任何激发, 两原子间操作的串扰可忽略[20]

    Figure 6.  (a) Energy levels and lasers of $ ^{85}{\rm Rb} $ and $ ^{87}{\rm Rb} $; (b) experimental setup; (c) the coherent Rabi oscillation between $ |\!\!\uparrow\rangle $ and $ |r\rangle $ of $ ^{87}{\rm Rb} $, there is no excitation of $ ^{85}{\rm Rb} $ although the Rydberg excitation lasers also act on it which shows negligible crosstalk between two atoms[20].

    图 7  (a) 异核里德伯阻塞的时序; (b) 异核里德伯阻塞. 没有$ ^{87}{\rm Rb} $时, $ ^{85}{\rm Rb} $展示了很好的基态到里德伯态的相干Rabi振荡, 当$ ^{87}{\rm Rb} $激发到里德伯态时, 由于异核里德伯阻塞, $ ^{85}{\rm Rb} $几乎没有Rabi振荡[20]

    Figure 7.  (a) Time sequence for heteronuclear Rydberg blockade; (b) Rabi oscillations between the $ ^{85}{\rm Rb} $ $ {\rm 5S_{1/2}}, F=3, m_F=0 $ and $ {\rm 79D_{5/2}}, m_j=5/2 $ states with and without $ ^{87}{\rm Rb} $ in Rydberg state[20].

    图 8  (a) 异核C-NOT门的时序; (b) 不同输入态$ |\!\!\downarrow\Uparrow\rangle $(黑色方块)和$ |\!\!\uparrow\Uparrow\rangle $(红色圆点)时, 输出态的布居随两个Raman $ {\text{π}}/2 $ 脉冲的振荡; 用正弦函数拟合后, 两个振荡间的相位差为$ (0.94 \pm 0.01) {\text{π}} $; (c) 初态制备的真值表; (d) 两个Raman $ {\text{π}}/2 $脉冲的相对相位设为0时, 测得的H-Cz型的C-NOT门的真值表[20]

    Figure 8.  (a) Experimental time sequence of H-Cz C-NOT gate; (b) output states as a function of the relative phase between the Raman $ {\text{π}}/2 $ pulses, for the initial states $ |\!\!\downarrow\Uparrow\rangle $ (black squares) and $ |\!\!\uparrow\Uparrow\rangle $ (red circles). The solid curves are sinusoidal fits yielding the phase difference of $ (0.94 \pm 0.01){\text{π}}$ between the two signals; (c) truth table matrix for the initial state preparation; (d) set the relative phase to be 0, the measured truth table matrix for H-Cz C-NOT gate[20]..

    图 9  (a) 制备和测量异核两原子纠缠的时序; (b) 纠缠态的布居; (c) 宇称信号随测量脉冲相对相位的振荡, 拟合得到$ |C_{1}|= 0.16 \pm 0.01 $[20]

    Figure 9.  (a) Time sequence for generating and verifying entanglement of two heteronuclear atoms; (b) measured probabilities for the entangled state; (c) the parity signal $ P $; the solid curve is a sinusoidal fit with $ |C_{1}|= 0.16 \pm 0.01 $[20].

    表 1  魔幻光强偶极阱中的退相干机制

    Table 1.  The mechanisms of decoherence in magic intensity optical trap.

    87Rb 退相干机制 参数 无转移时$T_2 $ 转移后$T_2 $
    均匀退相时间$T'_{2} $
    (Homogeneous dephasing time)
    磁场起伏 $ \sigma_B=0.019 $% 300 ms 300 ms
    偶极光功率起伏 $ \sigma_I=0.0015 $ 200 s 200 s
    偶极光重合及指向抖动 $ \sigma_{\rm{point}}=0.06 $ 30 s
    微波频率起伏 $ \sigma_{\rm MW} < 1 $ mHz $ > 300 $ s $ > 300 $ s
    原子加热 2 μK/s 34 s 34 s
    非均匀退相时间$T^{*}_{2} $
    (Inhomogeneous dephasing time)
    原子热运动约8 μK 2 s
    转移引起的加热 $ < 10\;{\text{μ}}{\rm K} $ $ > 1.2 $ s
    自旋翻转时间$T_{1} $ 偶极光引起的自旋翻转 0.66 $ {\rm s}\cdot {\rm mK}$ 4 s 4 s
    总的退相干时间T $ T=1/(1/T_{1}+1/T^{*}_{2}+1/T^{'}_{2}) $ 约242 ms 约222 ms
    实验值 约200 ms 约200 ms
    DownLoad: CSV
    Baidu
  • [1]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [2]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nat. Phys. 4 463Google Scholar

    [3]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [4]

    O’Brien J L 2007 Science 318 1567Google Scholar

    [5]

    Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A, Dzurak A S 2015 Nature 526 410Google Scholar

    [6]

    Childress L, Hanson R 2013 MRS Bulletin 38 134Google Scholar

    [7]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [8]

    周正威, 陈巍, 孙方稳, 项国勇, 李传锋 2012 科学通报 57 1498Google Scholar

    Zhou Z W, Chen W, Sun F W, Xiang G Y, Li C F 2012 Chin. Sci. Bull. 57 1498Google Scholar

    [9]

    Wu T Y, Kumar A, Mejia F G, Weiss D S 2018 arxiv: 1809.09197 [physics.atom-ph]

    [10]

    Saffman M 2018 Nat. Sci. Rev. nwy088Google Scholar

    [11]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [12]

    Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A 2018 Nature 561 79Google Scholar

    [13]

    Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [14]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [15]

    Wang Y, Kumar A, Wu T Y, Weiss D S 2016 Science 352 1562Google Scholar

    [16]

    Xia T, Lichtman M, Maller K, Carr A W, Piotrowicz M J, Isenhower L, Saffman M 2015 Phys. Rev. Lett. 114 100503Google Scholar

    [17]

    Yang J H, He X D, Guo R J, Xu P, Wang K P, Sheng C, Liu M, Wang J, Derevianko A, Zhan M S 2016 Phys. Rev. Lett. 117 123201Google Scholar

    [18]

    Li G, Zhang S, Isenhower L, Maller K, Saffman M 2012 Opt. Lett. 37 851Google Scholar

    [19]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [20]

    Zeng Y, Xu P, He X D, Liu Y Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2017 Phys. Rev. Lett. 119 160502Google Scholar

    [21]

    Kwon M, Ebert M F, Walker T G, Saffman M 2017 Phys. Rev. Lett. 119 180504Google Scholar

    [22]

    Martinez-Dorantes M, Alt W, Gallego J, Ghosh S, Ratschbacher L, Völzke Y, Meschede D 2017 Phys. Rev. Lett. 119 180503Google Scholar

    [23]

    DiVincenzo D P 2000 Fortschr. Phys. 48 771Google Scholar

    [24]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [25]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024Google Scholar

    [26]

    Kim H, Lee W, Lee H, Jo H, Song Y, Ahn J 2016 Nat. Commun. 7 13317Google Scholar

    [27]

    Kumar A, Wu T Y, Giraldo F, Weiss D S 2018 Nature 561 83Google Scholar

    [28]

    Walker T G, Saffman M 2012 Adv. At. Mol. Opt. Phys. 61 81Google Scholar

    [29]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2005 Phys. Rev. A 72 023406Google Scholar

    [30]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [31]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001Google Scholar

    [32]

    Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A, Meschede D 2004 Phys. Rev. Lett. 93 150501Google Scholar

    [33]

    Bakr W S, Gillen J T, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [34]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [35]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [36]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schauẞ P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319Google Scholar

    [37]

    Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, Wineland D J 2008 Phys. Rev. A 77 012307Google Scholar

    [38]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C, Weinfurter H 2006 Phys. Rev. Lett. 96 030404Google Scholar

    [39]

    Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, Weinfurter H 2012 Science 337 72Google Scholar

    [40]

    Jaksch D, Briegel H J, Cirac J I, Gardiner C W, Zoller P 1999 Phys. Rev. Lett. 82 1975Google Scholar

    [41]

    Strauch F W, Edwards M, Tiesinga E, Williams C, Clark C W 2008 Phys. Rev. A 77 050304Google Scholar

    [42]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Nature 425 937Google Scholar

    [43]

    Anderlini M, Lee P J, Brown B L, Strabley J S, Phillips W D, Porto J V 2007 Nature 448 452Google Scholar

    [44]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014Google Scholar

    [45]

    Thompson J D, Tiecke T G, Zibrov A S, Vuletic′ V, Lukin M D 2013 Phys. Rev. Lett. 110 133001Google Scholar

    [46]

    Kaufman A M, Lester B J, Foss-Feig M, Wall M L, Rey A M, Regal C A 2015 Nature 527 208Google Scholar

    [47]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208Google Scholar

    [48]

    Petrosyan D, Motzoi F, Saffman M, MØlmer K 2017 Phys. Rev. A 96 042306Google Scholar

    [49]

    Keating T, Cook R L, Hankin A M, Jau Y Y, Biedermann G W, Deutsch I H 2015 Phys. Rev. A 91 012337Google Scholar

    [50]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [51]

    Gaëtan A, Miroshnychenko M, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [52]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko J, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [53]

    Zhang X L, Isenhower L, Gill A T, Walker T G, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [54]

    Maller K M, Lichtman M T, Xia T, Sun Y, Piotrowicz M J, Carr A W, Isenhower L, Saffman M 2015 Phys. Rev. A 92 022336Google Scholar

    [55]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. Lett. 91 213002Google Scholar

    [56]

    Fuhrmanek A, Bourgain R, Sortais Y R P, Browaeys A 2011 Phys. Rev. Lett. 106 133003Google Scholar

    [57]

    Gibbons M J, Hamley C D, Shi C Y, Chapman M S 2011 Phys. Rev. Lett. 106 133002Google Scholar

    [58]

    He J, Yang B D, Zhang T C, Wang J M 2011 Phys. Scr. 84 025302Google Scholar

    [59]

    Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783Google Scholar

    [60]

    Yu S, He X D, Xu P, Liu M, Wang J, Zhan M S 2012 Chin. Sci. Bull. 57 1931Google Scholar

    [61]

    詹明生 2015 物理 44 518Google Scholar

    Zhan M S 2015 Physics 44 518Google Scholar

    [62]

    Yu S, Xu P, He X D, Liu M, Wang J, Zhan M S 2013 Opt. Express 21 32130Google Scholar

    [63]

    Yu S, Xu P, Liu M, He X D, Wang J, Zhan M S 2014 Phys. Rev. A 90 062335Google Scholar

    [64]

    Derevianko A 2010 Phys. Rev. A 81 051606Google Scholar

    [65]

    Lundblad N, Schlosser M, Porto J V 2010 Phys. Rev. A 81 031611Google Scholar

    [66]

    Carr A W, Saffman M 2016 Phys. Rev. Lett. 117 150801Google Scholar

    [67]

    Beterov I I, Saffman M 2015 Phys. Rev. A 92 042710Google Scholar

    [68]

    Auger J M, Bergamini S, Browne D E 2017 Phys. Rev. A 96 052320Google Scholar

    [69]

    Tan T R, Gaebler J P, Lin Y, Wan Y, Bowler T, Leibfried D, Wineland D J 2015 Nature 528 380Google Scholar

    [70]

    Ballance C J, Schäfer V M, Home J P, Szwer D J, Webster S C, Allcock D T, Linke N M, Harty T P, Aude Craik D P, Stacey D N, Steane A M, Lucas D M 2015 Nature 528 384Google Scholar

    [71]

    Weimer H, Müller M, Lesanovsky I, Zoller P, Büchler H P 2010 Nat. Phys. 6 382Google Scholar

    [72]

    Qian J, Zhang L, Zhai J J, Zhang W P 2015 Phys. Rev. A 92 063407Google Scholar

    [73]

    Wang J Y, Bai J D, He J, Wang J M 2016 J. Opt. Soc. Am. B 33 2020Google Scholar

    [74]

    Naber J B, Vos J, Rengelink R J, Nusselder R J, Davtyan D 2016 Eur. Phys. J. Spec. Top. 225 2785Google Scholar

    [75]

    Legaie R, Picken C J, Pritchard J D 2018 J. Opt. Soc. Am. B 35 892Google Scholar

    [76]

    Zeng Y, Wang K P, Lui Y Y, He X D, Liu M, Xu P, Wang J, Zhan M S 2018 Journal of the Optical Society of America B 35 454Google Scholar

    [77]

    Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [78]

    Beguin L 2013 Ph. D. Dissertation (Palaiseau: Institut d’Optique Graduate School)

    [79]

    Sedlacek J A, Kim E, Rittenhouse S T, Weck P F, Sadeghpour H R, Shaffer J P 2016 Phys. Rev. Lett. 116 133201Google Scholar

    [80]

    Xu P, Yang J H, Liu M, He X D, Zeng Y, Wang K P, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2015 Nat. Commun. 6 7803Google Scholar

    [81]

    de Léséleuc S, Barredo D, Lienhard V, Browaeys A, Lahaye T 2018 Phys. Rev. A 97 053803Google Scholar

    [82]

    Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2018 Phys. Rev. Lett. 121 123603Google Scholar

    [83]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [84]

    Chen Z Y, Zhou Q, Xue C, Yang X, Guo G C, Guo G P 2018 Sci. Bull. 63 964Google Scholar

    [85]

    Bravyi1 S, Gosset D, König R 2018 Science 362 308Google Scholar

    [86]

    Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J, Zhan M S 2018 Phys. Rev. Lett. 121 240501Google Scholar

    [87]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T and Browaeys A 2016 Nature 534 667Google Scholar

    [88]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [89]

    Schauss P 2018 Quantum Sci. Technol. 3 023001Google Scholar

    [90]

    Das S, Grankin A, Iakoupov I, Brion E, Borregaard J, Boddeda R, Usmani I, Ourjoumtsev A, Grangier P, Sørensen A S 2016 Phys. Rev. A 93 040303(R)Google Scholar

    [91]

    Wade A C J, Mattioli M, Mølmer K 2016 Phys. Rev. A 94 053830Google Scholar

    [92]

    Sun Y, Chen P X 2018 Optica 5 1492Google Scholar

  • [1] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [4] Li Xiang-Yan, Wang Zhi-Hui, Li Shao-Kang, Tian Ya-Li, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Measurement of magnetically insensitive state coherent time in blue dipole trap. Acta Physica Sinica, 2020, 69(8): 080301. doi: 10.7498/aps.69.20192001
    [5] Li Xiao-Kang, Jia Feng-Dong, Yu Fang-Chen, Li Ming-Yang, Xue Ping, Xu Xiang-Yuan, Zhong Zhi-Ping. The study on high n Rydberg state of La II. Acta Physica Sinica, 2019, 68(4): 043201. doi: 10.7498/aps.68.20181980
    [6] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [7] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [8] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [9] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [10] Wang Zhong-Qing, Zhao Xiao-Qi, Zhou Xian-Ju. Entanglement properties of two atoms interacting with weak coherent states trapped in two distant cavities connected by an optical fiber. Acta Physica Sinica, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [11] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [12] Sun Jiang, Liu Peng, Sun Juan, Su Hong-Xin, Wang Ying. Study of the satellite line in measurement of the argon -gas-induced broadening of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [13] Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin. Controlling the entanglement among three atoms by quantum-jump-based feedback. Acta Physica Sinica, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [14] Liu Xiao-Juan, Liu Yi-Man, Zhou Bing-Ju. Entanglement and preparation for an atom interacting with two-mode coherent strong field via intensity-dependent coupling multiphoton processes. Acta Physica Sinica, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [15] Xiong Heng-Na, Guo Hong, Jiang Jian, Chen Jun, Tang Li-Yan. The relation between the entanglement of two atoms and the entanglement of two-mode fields. Acta Physica Sinica, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [16] Shan Chuan-Jia, Xia Yun-Jie. The entanglement character of two entangled atoms in Tavis-Cummings model. Acta Physica Sinica, 2006, 55(4): 1585-1590. doi: 10.7498/aps.55.1585
    [17] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [18] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [19] Zhou Qing-Chun, Zhu Shi-Ning. Entanglement of a Λ-type three-level atom with a single-mode field initially in the number state. Acta Physica Sinica, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  15571
  • PDF Downloads:  689
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2018
  • Accepted Date:  24 December 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回
Baidu
map