搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗散环境下三原子之间稳定纠缠的量子反馈控制

陈宇 邹健 李军刚 邵彬

引用本文:
Citation:

耗散环境下三原子之间稳定纠缠的量子反馈控制

陈宇, 邹健, 李军刚, 邵彬

Controlling the entanglement among three atoms by quantum-jump-based feedback

Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin
PDF
导出引用
  • 研究利用基于量子跳跃的量子反馈控制来产生三个二能级原子之间稳定的纠缠.考虑三个二能级原子处于一个严重耗散的单模光腔中,分别讨论了反馈作用在一个原子上和反馈同时作用在三个原子上的情况.研究发现:当反馈作用在某个原子上时,基于量子跳跃的量子反馈能够保护另外两个原子的最大纠缠态.当反馈同时作用在三个原子上时,选择合适的参数可以得到两个基矢张开的无消相干子空间,并且利用量子轨迹蒙特卡罗波函数方法,得到一定初始条件下系统最终可以演化到这个子空间中三个原子之间的最大纠缠态.
    We consider a model consisting of three two-level atoms in a heavily damped cavity. We show that the quantum-jump-based feedback can be used to generate a steady entangled state of three atoms against decoherence. When the feedback acts on just one of the atoms, it can protect a maximally entangled state of other two atoms. When the feedback acts on three atoms, by choosing appropriate parameters we can obtain a decoherence-free subspace spanned by two vectors, and by using quantum trajectory Monte Carlo wave function method we find that the maximally entangled state of three atoms in this decoherence-free subspace can be obtained for some specific initial conditions.
    • 基金项目: 国家自然科学基金(批准号: 10974016)资助的课题.
    [1]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    Zheng X J, Fang M F, Cai J W, Liao X P 2006 Chin. Phys. 15 492

    [5]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [6]

    Chen X B, Wen Q Y, Sun Z X, Shangguan L Y, Yang Y X 2010 Chin. Phys. B 19 010303

    [7]

    Gao F, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 3189

    [8]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [9]

    Fu C B, Xia Y, Zhang S 2006 Chin. Phys. 15 1682

    [10]

    Zheng X J, Xu H, Fang M F, Zhu K C 2010 Chin. Phys. B 19 010309

    [11]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [12]

    Bennett C H, Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing (New York: IEEE) pp175—179

    [13]

    He J, Ye L, Ni Z X 2008 Chin. Phys. B 17 1597

    [14]

    Zhang J S, Xu J B 2009 Chin. Phys. B 18 2288

    [15]

    Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313

    [16]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345

    [17]

    Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M, Haroche S 2000 Science 288 2024

    [18]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256

    [19]

    Roos C F, Lancaster G P T, Riebe M, Hffner H, Hnsel W,

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Carvalho A R R, Mintert F, Buchleitner A 2004 Phys. Rev. Lett. 93 230501

    [22]

    Wiseman H M, Milburn G J 1993 Phys. Rev. Lett. 70 548

    [23]

    Wiseman H M 1994 Phys. Rev. A 49 2133

    [24]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 1350

    [25]

    Wiseman H M 1994 Ph. D. Dissertation (Brisbane: University of Queensland)

    [26]

    Smith W P, Reiner J E, Orozco L A, Kuhr S, Wiseman H M 2002 Phys. Rev. Lett. 89 133601

    [27]

    Armen M A, Au J K, Stockton J K, Doherty A C, Mabuchi H 2002 Phys. Rev. Lett. 89 133602

    [28]

    Lahaye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [29]

    Geremia J M, Stockton J K, Mabuchi H 2004 Science 304 270

    [30]

    Wang J, Wiseman H M, Milburn G J 2005 Phys. Rev. A 71 042309

    [31]

    Yamamoto N 2005 Phys. Rev. A 72 024104

    [32]

    Carvalho A R R, Hope J J 2007 Phys. Rev. A 76 010301

    [33]

    Carvalho A R R, Reid A J S, Hope J J 2008 Phys. Rev. A 78 012334

    [34]

    Li J G, Zou J, Shao B, Cai J F 2008 Phys. Rev. A 77 012339

    [35]

    Xue D, Zou J, Li J G, Chen W Y, Shao B 2010 J. Phys. B 43 045503

    [36]

    Orszag M 2000 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Berlin: Springer-Verlag) pp205—229

    [37]

    Borras A, Majtey A P, Plastino A R, Casas M, Plastino A 2009 Phys. Rev. A 79 022108

  • [1]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Gulde S, Becher C, Eschner J, Schmidt-Kaler F, Blatt R 2004 Phys. Rev. Lett. 92 220402

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    Zheng X J, Fang M F, Cai J W, Liao X P 2006 Chin. Phys. 15 492

    [5]

    Chen X B, Du J Z, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 771

    [6]

    Chen X B, Wen Q Y, Sun Z X, Shangguan L Y, Yang Y X 2010 Chin. Phys. B 19 010303

    [7]

    Gao F, Wen Q Y, Zhu F C 2008 Chin. Phys. B 17 3189

    [8]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [9]

    Fu C B, Xia Y, Zhang S 2006 Chin. Phys. 15 1682

    [10]

    Zheng X J, Xu H, Fang M F, Zhu K C 2010 Chin. Phys. B 19 010309

    [11]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [12]

    Bennett C H, Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing (New York: IEEE) pp175—179

    [13]

    He J, Ye L, Ni Z X 2008 Chin. Phys. B 17 1597

    [14]

    Zhang J S, Xu J B 2009 Chin. Phys. B 18 2288

    [15]

    Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313

    [16]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345

    [17]

    Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M, Haroche S 2000 Science 288 2024

    [18]

    Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J, Monroe C 2000 Nature 404 256

    [19]

    Roos C F, Lancaster G P T, Riebe M, Hffner H, Hnsel W,

    [20]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [21]

    Carvalho A R R, Mintert F, Buchleitner A 2004 Phys. Rev. Lett. 93 230501

    [22]

    Wiseman H M, Milburn G J 1993 Phys. Rev. Lett. 70 548

    [23]

    Wiseman H M 1994 Phys. Rev. A 49 2133

    [24]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 1350

    [25]

    Wiseman H M 1994 Ph. D. Dissertation (Brisbane: University of Queensland)

    [26]

    Smith W P, Reiner J E, Orozco L A, Kuhr S, Wiseman H M 2002 Phys. Rev. Lett. 89 133601

    [27]

    Armen M A, Au J K, Stockton J K, Doherty A C, Mabuchi H 2002 Phys. Rev. Lett. 89 133602

    [28]

    Lahaye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [29]

    Geremia J M, Stockton J K, Mabuchi H 2004 Science 304 270

    [30]

    Wang J, Wiseman H M, Milburn G J 2005 Phys. Rev. A 71 042309

    [31]

    Yamamoto N 2005 Phys. Rev. A 72 024104

    [32]

    Carvalho A R R, Hope J J 2007 Phys. Rev. A 76 010301

    [33]

    Carvalho A R R, Reid A J S, Hope J J 2008 Phys. Rev. A 78 012334

    [34]

    Li J G, Zou J, Shao B, Cai J F 2008 Phys. Rev. A 77 012339

    [35]

    Xue D, Zou J, Li J G, Chen W Y, Shao B 2010 J. Phys. B 43 045503

    [36]

    Orszag M 2000 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Berlin: Springer-Verlag) pp205—229

    [37]

    Borras A, Majtey A P, Plastino A R, Casas M, Plastino A 2009 Phys. Rev. A 79 022108

  • [1] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析.  , 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门.  , 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究.  , 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [5] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展.  , 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [6] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性.  , 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [7] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展.  , 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [9] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠.  , 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [10] 王灿灿. 量子纠缠与宇宙学弗里德曼方程.  , 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [11] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性.  , 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [12] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数.  , 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [13] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响.  , 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性.  , 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [18] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [19] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [20] 王波波, 刘辽. Brans-Dicke理论中静态球对称引力场的de Broglie-Bohm量子化.  , 2002, 51(7): 1654-1660. doi: 10.7498/aps.51.1654
计量
  • 文章访问数:  8424
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-12
  • 修回日期:  2010-06-22
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map