-
In this paper, the idea of electromagnetic surface (EMS) is introduced into the design of microstrip antenna array. The antenna element proposed in this paper is treated as an EMS element, whose reflection characteristics are taken into consideration in the process of antenna array design. Firstly, a rectangular patch antenna element is designed. Then, by cutting arc-shaped structure into a rectangular patch, another element is created to generate 180° ± 30° effective phase difference compared with original antenna element. As a consequence, 180° ± 30° effective phase difference is obtained from 5.5 GHz to 6.9 GHz for the y-polarized incidence. Meanwhile, for the x-polarized incidence, each of the two elements possesses high absorptivity over the operating frequency as a result of matching load. Besides, the two elements work in the same resonant mode and the same resonant frequency band when treated as radiators. In order to further explain the consistency in radiation and difference in reflection between the two structures, current distribution at 5.8 GHz is investigated in terms of radiation and reflection. Then, the two elements are arranged into a chessboard array to achieve the low scattering performance based on phase cancellation principle under the y-polarized incidence. Based on the absorption principle, the matching load is added to improve the scattering performance of the composite antenna array with the x-polarized incidence. Simultaneously, the proposed antenna array maintains good radiation characteristics due to the consistency between the radiation performances of the two elements. The corresponding antenna array is fabricated and tested. Simulated and measured results prove that the proposed antenna array also achieves good radiation performance. And a 6 dB radar cross section reduction is obtained from 5.6 to 6.2 GHz under the x polarization and from 5.5 to 7.0 GHz under the y polarization for the normal incident wave, implying 10.1% and 24% in relative bandwidth, respectively. In-band reflection suppression in the specular direction is demonstrated for an incident angle of 30° under both polarizations. The measured results are in good agreement with the simulated ones. Additionally, the approach proposed in this paper offers an effective way to deal with the confliction between radiation and scattering performance, and can also be applied to other kinds of antenna arrays.
[1] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 64 094102Google Scholar
Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar
[2] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar
[3] 姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162
Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162
[4] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[6] Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar
[7] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[8] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[9] Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar
[10] Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar
[11] Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar
[12] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar
[13] Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[15] Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[16] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar
[17] Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar
[18] Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar
[19] Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar
[20] Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar
[21] 孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282
Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282
[22] 李响 2017 硕士学位论文 (南京: 南京信息工程大学)
Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)
-
图 3 不同参数对EMS1反射特性的影响 (a) l1对反射幅度的影响; (b) l1对反射相位的影响; (c) s1对反射幅度的影响; (d) s1对反射相位的影响; (e) w1对反射幅度的影响; (f) w1对反射相位的影响
Figure 3. Effects of various parameters on reflection performance: Effects of l1 on (a) reflection magnitude and (b) phase; effects of s1 on (c) reflection magnitude and (d) phase; effects of w1 on (e) reflection magnitude and (f) phase.
表 1 本文所设计的低散射微带天线阵与文献[17−20]中的对比
Table 1. Comparison between this work and other antenna arrays in Ref. [17−20].
阵列规模 阵元间隔/$\lambda $ 天线阵尺寸大小 天线阵相对带宽/% 带内RCS减缩量 RCS缩减相对带宽/% 文献[17] 2 × 2 0.69 1.38$\lambda $ × 1.38$\lambda $ 2.4 无减缩 122 文献[18] 2 × 2 0.64 2.40$\lambda $ × 2.40$\lambda $ 10.9 3 dB以上 126 文献[19] 2 × 2 0.60 3.65$\lambda $ × 3.65$\lambda $ 11.0 5 dB以上 93 文献[20] 2 × 2 0.90 1.80$\lambda $ × 1.80$\lambda $ 5.5 无减缩 69 本文 4 × 4 0.48 1.92$\lambda $ × 1.92$\lambda $ 6.9 6 dB以上 59 -
[1] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 64 094102Google Scholar
Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar
[2] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar
[3] 姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162
Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162
[4] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar
[5] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[6] Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar
[7] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[8] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar
[9] Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar
[10] Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar
[11] Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar
[12] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar
[13] Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar
[15] Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[16] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar
[17] Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar
[18] Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar
[19] Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar
[20] Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar
[21] 孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282
Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282
[22] 李响 2017 硕士学位论文 (南京: 南京信息工程大学)
Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)
Catalog
Metrics
- Abstract views: 8749
- PDF Downloads: 131
- Cited By: 0