Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning broadband optical parametric chirped pulse amplification based on optical beam deflection

Ye Rong Zhong Zhe-Qiang Wu Xian-Yun

Citation:

Scanning broadband optical parametric chirped pulse amplification based on optical beam deflection

Ye Rong, Zhong Zhe-Qiang, Wu Xian-Yun
PDF
HTML
Get Citation
  • One of the goals pursued in laser pulse is to achieve a laser with a shorter duration and higher intensity. In the past two decades, the laser pulse duration has been shortened by more than 7 orders of magnitude due to the development of Q-switched, Mode-locked and pulse compression technology. The peak power of laser pulse has been increased to PW, even EW and ZW from initial MW with the development of pulse amplification technology, whose focused intensity can reach to 1023 W/cm2. Thus, it provides unprecedented extreme conditions, and speeds up the laser applications in ultrafast nonlinear optics, strong field physics, fast ignition of laser nuclear fusion, optic communication, etc. The optical parametric chirped pulse amplification (OPCPA) is one of the important technologies in ultra-short laser pulse field. It is of great significance to increase the gain bandwidth for improving the conversion efficiency of OPCPA and achieving broadband optical parametric amplification. Combining the optical beam deflection and non-collinear OPCPA, a novel scanning broadband OPCPA model is proposed based on the optical beam deflection. The basic principle of increasing the gain bandwidth for the scanning broadband OPCPA is analyzed theoretically, which ensures the phase matching of each frequency component of signal by optical beam deflecting to change the non-collinear angle constantly. Namely, the non-collinear angles of incident frequency components of signal are different from each other, which, however, makes the whole phase matching of signal, i.e. momentum conservation in optics. The optical parametric amplification of signal pulse with 800 nm central wavelength and almost 100 nm bandwidth is simulated numerically by the proposed scanning broadband OPCPA. The results show that the bandwidth after being amplified is almost the same as before and there is no spectral narrowing, and the scanning broadband OPCPA increases the gain bandwidth and conversion efficiency greatly compared with the amplification with a constant given non-collinear angle, which leads to broadband optical parametric amplification. Finally, it is necessary to make sure that the on-load voltage to the KTN crystal matches with the frequency of signal pulse in time and reduces the unfavorable voltage deviation and time-delay for the maximizing gain bandwidth and conversion efficiency and ensuring the phase matching of each signal frequency component. The results of this paper not only provide an approach to increasing the gain bandwidth of OPCPA, but also supply some theoretical references and the basis for the experimental work of OPCPA in ultra-short laser pulse system.
      Corresponding author: Ye Rong, yj1987211@163.com
    • Funds: Project supporte by the Seeding Project of Science and Technology Program of Sichuan, China (Grant No. 2018100) and the Cultivating Program of Chengdu Normal University, China (Grant No. CS17ZD03).
    [1]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79

    [2]

    魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页

    Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)

    [3]

    Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1

    [4]

    Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar

    [5]

    Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464

    [6]

    陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页

    Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [8]

    Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529

    [9]

    Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar

    [10]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [11]

    Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar

    [12]

    Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794

    [13]

    Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar

    [14]

    Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar

    [15]

    Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar

    [16]

    Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar

    [17]

    夏江帆, 魏志义, 张杰 2000 49 256Google Scholar

    Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar

    [18]

    马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 54 4765Google Scholar

    Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar

    [19]

    Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar

    [20]

    Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar

    [21]

    Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar

    [22]

    刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 56 4635Google Scholar

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar

    [23]

    刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 57 2981Google Scholar

    Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar

    [24]

    Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar

    [25]

    Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1

    [26]

    Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar

    [27]

    Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar

    [28]

    Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1

    [29]

    Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1

    [30]

    Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388

    [31]

    Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar

    [32]

    Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60

  • 图 1  相位失配量随相位匹配角和信号光波长的等高线分布

    Figure 1.  Contour plot of phase-mismatching, signal wavelength, and phase-matching angle.

    图 2  相位失配量随非共线角增量和信号光波长的等高线分布

    Figure 2.  Contour plot of phase-mismatching, signal wavelength, and increment of non-collinear angle.

    图 3  满足相位匹配的非共线角随信号波长的变化

    Figure 3.  Variation of non-collinear angle with signal wavelength under phase matching.

    图 4  扫描式光参量啁啾脉冲放大示意图, 内插图为相位匹配几何关系

    Figure 4.  Schematic drawing of scanning OPCPA, and the inset is the geometry of phase matching.

    图 5  不同方式放大后信号光的时域波形和频谱分布对比 (a)时域波形; (b)频谱分布

    Figure 5.  Comparison of time domain waveform and frequency spectrum with different amplification: (a) Time domain waveform; (b) frequency spectrum.

    图 6  光束偏转产生非共线角增量所需要的电压和相位失配量随信号波长的变化 (a) 需要的电压; (b) 相位失配量的变化

    Figure 6.  The required voltage for Non-collinear angular increments by optical beam deflection and the variation of phase-mismatching with signal wavelength: (a) Required voltage; (b) variation of phase-mismatching.

    图 7  电压抖动对扫描式OPCPA放大后信号脉冲的影响 (a) 时域波形; (b) 频谱分布; (c) 带宽

    Figure 7.  Effect of voltage deviation on signal pulse after scanning OPCPA: (a) Time domain waveform; (b) frequency spectrum; (c) bandwidth.

    图 8  扫描式宽带OPCPA转换效率随电压抖动和电压延时 (a) 电压抖动; (b) 电压延时

    Figure 8.  Variation of conversion efficiency with voltage deviations and voltage time-delay for scanning broadband OPCPA: (a) Voltage deviation; (b) voltage time-delay.

    Baidu
  • [1]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79

    [2]

    魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页

    Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)

    [3]

    Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1

    [4]

    Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar

    [5]

    Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464

    [6]

    陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页

    Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [8]

    Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529

    [9]

    Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar

    [10]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [11]

    Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar

    [12]

    Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794

    [13]

    Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar

    [14]

    Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar

    [15]

    Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar

    [16]

    Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar

    [17]

    夏江帆, 魏志义, 张杰 2000 49 256Google Scholar

    Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar

    [18]

    马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 54 4765Google Scholar

    Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar

    [19]

    Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar

    [20]

    Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar

    [21]

    Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar

    [22]

    刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 56 4635Google Scholar

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar

    [23]

    刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 57 2981Google Scholar

    Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar

    [24]

    Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar

    [25]

    Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1

    [26]

    Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar

    [27]

    Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar

    [28]

    Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1

    [29]

    Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1

    [30]

    Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388

    [31]

    Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar

    [32]

    Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60

  • [1] Li Gang, Guo Yi, Zeng Xiao-Ming, Xie Na, Shao Zhong-Xi, Huang Zheng, Sun Li, Jiang Dong-Bin, Lu Feng, Zhu Bin, Zhou Kai-Nan, Su Jing-Qin. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA. Acta Physica Sinica, 2022, 71(7): 074203. doi: 10.7498/aps.71.20211961
    [2] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [3] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [4] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [5] Liang Wen-Yao, Zhang Yu-Xia, Chen Wu-He. Physical mechanism of super-broadband and all-angle self-collimation transmission in photonic crystal with low rotational symmetry. Acta Physica Sinica, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [6] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [7] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [8] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [9] Zhao Yi, Cao Xiang-Yu, Gao Jun, Yao Xu, Ma Jia-Jun, Li Si-Jia, Yang Huan-Huan. A wideband low RCS reflection screen based on artificial magnetic conductor orthogonal array. Acta Physica Sinica, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [10] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [11] Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng. Terahertz broadband antireflection photonic device with graded refractive indices. Acta Physica Sinica, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [12] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [13] Deng Qing-Hua, Ding Lei, He Shao-Bo, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Dong Yi-Fang. Methods for determining and detuning the length of nonlinear crystal in optical pulse chirped amplifier. Acta Physica Sinica, 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [14] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [15] Zeng Shu-Guang, Zhang Bin. Inverse problem of optical parametric chirped pulse amplification. Acta Physica Sinica, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [16] Liu Hua-Gang, Zhang Ruo-Bing, Zhu Chen, Chai Lu, Wang Qing-Yue. Bandwidth and gain of optical parametric chirped pulse amplification pumped by non-monochromatic light. Acta Physica Sinica, 2008, 57(5): 2981-2986. doi: 10.7498/aps.57.2981
    [17] Zhai Hui, Xu Shi-Xiang, Xu Zhi-Xiong, Cai Hua, Yang Xuan, Wu Kun, Zeng He-Ping. Generation of background-free pulses at 1064nm accurately synchronized with femtosecond laser pulses at 794nm. Acta Physica Sinica, 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [18] Liu Hua-Gang, Zhang Ruo-Bing, Zhang Hai-Qing, Zhu Chen, Ma Jing, Wang Qing-Yue. Theoretical study of optical parametric chirped pulse amplification pumped by divergent beams. Acta Physica Sinica, 2007, 56(8): 4635-4641. doi: 10.7498/aps.56.4635
    [19] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
Metrics
  • Abstract views:  7011
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2018
  • Accepted Date:  22 October 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map