-
One of the goals pursued in laser pulse is to achieve a laser with a shorter duration and higher intensity. In the past two decades, the laser pulse duration has been shortened by more than 7 orders of magnitude due to the development of Q-switched, Mode-locked and pulse compression technology. The peak power of laser pulse has been increased to PW, even EW and ZW from initial MW with the development of pulse amplification technology, whose focused intensity can reach to 1023 W/cm2. Thus, it provides unprecedented extreme conditions, and speeds up the laser applications in ultrafast nonlinear optics, strong field physics, fast ignition of laser nuclear fusion, optic communication, etc. The optical parametric chirped pulse amplification (OPCPA) is one of the important technologies in ultra-short laser pulse field. It is of great significance to increase the gain bandwidth for improving the conversion efficiency of OPCPA and achieving broadband optical parametric amplification. Combining the optical beam deflection and non-collinear OPCPA, a novel scanning broadband OPCPA model is proposed based on the optical beam deflection. The basic principle of increasing the gain bandwidth for the scanning broadband OPCPA is analyzed theoretically, which ensures the phase matching of each frequency component of signal by optical beam deflecting to change the non-collinear angle constantly. Namely, the non-collinear angles of incident frequency components of signal are different from each other, which, however, makes the whole phase matching of signal, i.e. momentum conservation in optics. The optical parametric amplification of signal pulse with 800 nm central wavelength and almost 100 nm bandwidth is simulated numerically by the proposed scanning broadband OPCPA. The results show that the bandwidth after being amplified is almost the same as before and there is no spectral narrowing, and the scanning broadband OPCPA increases the gain bandwidth and conversion efficiency greatly compared with the amplification with a constant given non-collinear angle, which leads to broadband optical parametric amplification. Finally, it is necessary to make sure that the on-load voltage to the KTN crystal matches with the frequency of signal pulse in time and reduces the unfavorable voltage deviation and time-delay for the maximizing gain bandwidth and conversion efficiency and ensuring the phase matching of each signal frequency component. The results of this paper not only provide an approach to increasing the gain bandwidth of OPCPA, but also supply some theoretical references and the basis for the experimental work of OPCPA in ultra-short laser pulse system.
-
Keywords:
- optical parametric chirped pulse amplification /
- optical beam deflection /
- scanning /
- broadband
[1] Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79
[2] 魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页
Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)
[3] Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1
[4] Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar
[5] Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464
[6] 陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页
Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)
[7] Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar
[8] Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529
[9] Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar
[10] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[11] Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar
[12] Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794
[13] Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar
[14] Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar
[15] Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar
[16] Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar
[17] 夏江帆, 魏志义, 张杰 2000 49 256Google Scholar
Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar
[18] 马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 54 4765Google Scholar
Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar
[19] Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar
[20] Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar
[21] Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar
[22] 刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 56 4635Google Scholar
Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar
[23] 刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 57 2981Google Scholar
Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar
[24] Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar
[25] Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1
[26] Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar
[27] Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar
[28] Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1
[29] Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1
[30] Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388
[31] Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar
[32] Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60
-
-
[1] Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79
[2] 魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页
Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)
[3] Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1
[4] Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar
[5] Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464
[6] 陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页
Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)
[7] Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar
[8] Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529
[9] Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar
[10] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[11] Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar
[12] Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794
[13] Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar
[14] Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar
[15] Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar
[16] Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar
[17] 夏江帆, 魏志义, 张杰 2000 49 256Google Scholar
Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar
[18] 马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 54 4765Google Scholar
Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar
[19] Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar
[20] Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar
[21] Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar
[22] 刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 56 4635Google Scholar
Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar
[23] 刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 57 2981Google Scholar
Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar
[24] Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar
[25] Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1
[26] Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar
[27] Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar
[28] Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1
[29] Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1
[30] Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388
[31] Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar
[32] Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60
Catalog
Metrics
- Abstract views: 7013
- PDF Downloads: 0
- Cited By: 0