-
The illumination uniformity of laser beams in inertial confinement fusion (ICF) facility is a key factor, which plays a crucial role in suppressing the laser plasma instabilities. However, the prevailing beam smoothing techniques cannot meet all the requirements for improving the irradiance uniformity of laser beams and mitigating the laser plasma instabilities, which are determined by the high-frequency spatial modulations and the fine-scale speckles of the focal spots. An ultrafast azimuthal beam smoothing scheme based on vortex beams is proposed in this paper. In this scheme, two of the four beams in a laser quad are transformed from super-Gaussian (SG) beams into vortex beams by inserting two spiral phase plates with opposite topological charges into the beam path, whereas the other two SG beams remain unchanged. By controlling the polarization and the center wavelength of each beam, the SG beam and the transformed vortex beam in the quad are coherently superposed on the target plane, so are the remaining two beams. Owing to the difference in central wavelength and the existence of the topological charges, two focal spots rotating in a period of a few picoseconds are generated in the target plane, which can redistribute the speckles quickly in temporal domain and thus improve the irradiance uniformity of the laser quad. By establishing the physical model of the azimuthal smoothing scheme, the smoothing characteristics including the rotation period, the illumination uniformity and the fractional-power-above-intensity of the focal spots are analyzed in detail. In order to improve the smoothing characteristics significantly, the novel smoothing scheme is further combined with another ultrafast smoothing scheme, i.e. radial smoothing scheme. The influence of the key parameters of the combined smoothing scheme on the illumination uniformity and on the smoothing velocity are discussed. Results indicate that the azimuthal smoothing scheme can achieve the ultrafast smooth of the laser quad in the azimuthal direction and the best illumination uniformity within a few picoseconds as well. Though the degree of improvement in the irradiance uniformity of the azimuthal smoothing scheme is lower than that of the radial smoothing, the combination of these two schemes can improve the uniformity effectively and rapidly. The novel smoothing scheme provides a potential smoothing approach for the high-power laser facilities.
[1] Miller G H, Moses E I, Wuest C R 2004 Nucl. Fusion 44 S228Google Scholar
[2] Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar
[3] Rushford M C, Dixit S N, Thomas I M, Martin A M, Perry M D 2000 Proc. SPIE 87 3654
[4] Néauport J, Ribeyre X, Daurios J, Valla D, Martine L, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar
[5] Boehly T R, Babushkin A, Bradley D K, Craxton R S, Delettrez J A, Epstein R, Kessler T J, Knayer J P, McCrory R L, McKenty P W, Meyerhofer D D, Regan S, Seka W, Skupsky S, Smalyuk V A, Town R P J, Yaakobi B 2001 Laser Part. Beams 18 11
[6] Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342
[7] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar
[8] Glenzer S H, Suter L J, Turner R E, Macgowan B J, Estabrook K G, Blain M A, Dixit S N, Hammel B A, Kauffman R L, Kirkwood R K, Landen O L, Monteil M C, Moody J D, Orzechowski T J, Pennington D M, Stone G F, Weiland T L 1998 Phys. Rev. Lett. 80 2845
[9] Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar
[10] Zhong Z, Hou P, Zhang B 2015 Opt. Lett. 40 5850Google Scholar
[11] Chen J, Kuang D F, Gui M, Fang Z L 2009 Chin. Phys. Lett. 26 102
[12] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[13] Paisner J A, Murray J R 1997 17th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA (United States), October 6−10, 1997 p57
[14] Wisoff P J, Bowers M W 2004 Proc. SPIE 5341 146Google Scholar
[15] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201Google Scholar
Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201Google Scholar
[16] Wang Y, Wang F, Zhang Y, Huang X, Hu D, Zheng W, Zhu R, Deng X 2017 Appl. Opt. 56 8087Google Scholar
[17] Schneider M B, Maclaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kilkenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, MoodyJ D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar
[18] Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar
[19] Pennington D M, Henesian M A, Wilcox R B, Wilcox R B, Weiland T L, Eimerl D, Ehrlich R B, Laumann C W, Miller J L 1995 The 1st Annual International Conference on Solid-State Lasers for Application to Inertial Confinement Fusion California, American, May 30−June 2, 1995 p214
[20] Kotlyar V V, Almazov A A, Khonina S N, Soifer V A 2005 J. Opt. Soc. Am. A 22 849Google Scholar
[21] Wang C, Liu T, Ren Y, Shao Q, Dong H 2018 Optik 171 404
[22] Guo C S, Xue D M, Han Y J, Ding J P 2006 Opt. Commun. 268 235Google Scholar
-
-
[1] Miller G H, Moses E I, Wuest C R 2004 Nucl. Fusion 44 S228Google Scholar
[2] Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar
[3] Rushford M C, Dixit S N, Thomas I M, Martin A M, Perry M D 2000 Proc. SPIE 87 3654
[4] Néauport J, Ribeyre X, Daurios J, Valla D, Martine L, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar
[5] Boehly T R, Babushkin A, Bradley D K, Craxton R S, Delettrez J A, Epstein R, Kessler T J, Knayer J P, McCrory R L, McKenty P W, Meyerhofer D D, Regan S, Seka W, Skupsky S, Smalyuk V A, Town R P J, Yaakobi B 2001 Laser Part. Beams 18 11
[6] Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342
[7] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar
[8] Glenzer S H, Suter L J, Turner R E, Macgowan B J, Estabrook K G, Blain M A, Dixit S N, Hammel B A, Kauffman R L, Kirkwood R K, Landen O L, Monteil M C, Moody J D, Orzechowski T J, Pennington D M, Stone G F, Weiland T L 1998 Phys. Rev. Lett. 80 2845
[9] Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar
[10] Zhong Z, Hou P, Zhang B 2015 Opt. Lett. 40 5850Google Scholar
[11] Chen J, Kuang D F, Gui M, Fang Z L 2009 Chin. Phys. Lett. 26 102
[12] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[13] Paisner J A, Murray J R 1997 17th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA (United States), October 6−10, 1997 p57
[14] Wisoff P J, Bowers M W 2004 Proc. SPIE 5341 146Google Scholar
[15] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201Google Scholar
Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201Google Scholar
[16] Wang Y, Wang F, Zhang Y, Huang X, Hu D, Zheng W, Zhu R, Deng X 2017 Appl. Opt. 56 8087Google Scholar
[17] Schneider M B, Maclaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kilkenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, MoodyJ D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar
[18] Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Express 12 3548Google Scholar
[19] Pennington D M, Henesian M A, Wilcox R B, Wilcox R B, Weiland T L, Eimerl D, Ehrlich R B, Laumann C W, Miller J L 1995 The 1st Annual International Conference on Solid-State Lasers for Application to Inertial Confinement Fusion California, American, May 30−June 2, 1995 p214
[20] Kotlyar V V, Almazov A A, Khonina S N, Soifer V A 2005 J. Opt. Soc. Am. A 22 849Google Scholar
[21] Wang C, Liu T, Ren Y, Shao Q, Dong H 2018 Optik 171 404
[22] Guo C S, Xue D M, Han Y J, Ding J P 2006 Opt. Commun. 268 235Google Scholar
Catalog
Metrics
- Abstract views: 7609
- PDF Downloads: 59
- Cited By: 0