-
In this paper we propose a method to detect the topology charge of vortex beam using digital holography. Hologram of vortex beam interference with reference beam is recorded, and the phase of vortex beam is reconstructed. The topology charge can be accurately determined by judging the periodicity of reconstructed phase distribution around the phase singularity. The phases of vortex beams generated by numerical simulation and those obtained by experiment of vortex beams with integral and fractional topology charges are compared with each other. The feasibility of the method of detecting the topology charge of vortex beam using digital holography is proved by comparing the results.
-
Keywords:
- vortex beam /
- topology charge /
- digital holography /
- phase reconstruction
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Allen L, Babiker M, Lai W K, Lembessis V E 1996 Phys. Rev. A 54 4259
[3] Yang Y, Dong Y, Zhao C, Cai Y 2013 Opt. Lett. 38 5418
[4] Chen M, Mazilu M, Arita Y, Wright E M, Dholakia K 2013 Opt. Lett. 38 4919
[5] Leach J, Padgett M J, Barnett S M, Arnold S F, Courtial J 2002 Phys. Rev. Lett. 88 257901
[6] Berkhout G C G, Beijersbergen M W 2009 J. Opt. A: Pure Appl. Opt. 11 094021
[7] Liu R F, Long J L, Wang F R, Wang Y L, Zhang P, Gao H, Li F L 2013 J. Opt. 15 125712
[8] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801
[9] Liu M 2013 Eur. Phys. J. D 67 244
[10] Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]
[11] Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 60 094204]
[12] Goodman J W (translated by Qin K C) 2005 Introduction to Fourier Optics (Beijing: Publishing House of Electronics Industry) p227 (in Chinese) [古德曼J W著 (秦克诚译) 2005 傅里叶光学导论 (北京: 电子工业出版社) 第227页]
[13] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 064103 (in Chinese) [丁攀峰, 蒲继雄 2012 61 064103]
[14] Martinez-Castellanos I, Gutiérrez-Vega J C 2013 J. Opt. Soc. Am. A 30 2395
[15] Basistiy I V, Pas'ko V A, Slyusar V V, Soskin M S, Vasnetsov M V 2004 J. Opt. A: Pure Appl. Opt. 6 S166
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Allen L, Babiker M, Lai W K, Lembessis V E 1996 Phys. Rev. A 54 4259
[3] Yang Y, Dong Y, Zhao C, Cai Y 2013 Opt. Lett. 38 5418
[4] Chen M, Mazilu M, Arita Y, Wright E M, Dholakia K 2013 Opt. Lett. 38 4919
[5] Leach J, Padgett M J, Barnett S M, Arnold S F, Courtial J 2002 Phys. Rev. Lett. 88 257901
[6] Berkhout G C G, Beijersbergen M W 2009 J. Opt. A: Pure Appl. Opt. 11 094021
[7] Liu R F, Long J L, Wang F R, Wang Y L, Zhang P, Gao H, Li F L 2013 J. Opt. 15 125712
[8] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801
[9] Liu M 2013 Eur. Phys. J. D 67 244
[10] Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]
[11] Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 60 094204]
[12] Goodman J W (translated by Qin K C) 2005 Introduction to Fourier Optics (Beijing: Publishing House of Electronics Industry) p227 (in Chinese) [古德曼J W著 (秦克诚译) 2005 傅里叶光学导论 (北京: 电子工业出版社) 第227页]
[13] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 064103 (in Chinese) [丁攀峰, 蒲继雄 2012 61 064103]
[14] Martinez-Castellanos I, Gutiérrez-Vega J C 2013 J. Opt. Soc. Am. A 30 2395
[15] Basistiy I V, Pas'ko V A, Slyusar V V, Soskin M S, Vasnetsov M V 2004 J. Opt. A: Pure Appl. Opt. 6 S166
Catalog
Metrics
- Abstract views: 7700
- PDF Downloads: 743
- Cited By: 0