-
Ferroelectric (FE) materials have been extensively applied to the multifunctional electronic devices, particularly the FE memories due to their excellent physical properties. The FE memory is a kind of nonvolatile memory device, and it could overcome the shortcomings of the traditional memory. But the development of the FE memory is very slow due to the FE failure problem. However, with the continuous decrease of the thickness of FE thin film, when it reaches microns or nanometers in magnitude, the leakage current is the main cause of the FE failure of FE thin film. The leakage current of FE thin film is directly related to whether the FE memory is applicable, and it has been the hot spot of scientific researches. There are still a lot of factors influencing the FE memory leakage current except for the thickness of the film, such as interface, processing temperature, defect, domain wall, etc. Of these factors, the defect and domain wall are the most common and the most probable. In this paper, the first-principle calculation method through combining the density function theory with the nonequilibrium Green's function is used to systematically study the influence of oxygen vacancy defect on the leakage current of the FE thin film. The doping with four kinds of Cu, Al, V, and Fe cations is used to regulate and control the leakage current of the FE thin PbTiO3 film caused by the oxygen vacancy defects. We investigate the leakage current induced by oxygen vacancies in PbTiO3 films, and the doped PbTiO3 thin FE films having oxygen vacancies. It is found that Fe and Al doping will increase the leakage current of oxygen vacancy defects of FE thin films, while the Cu and V doping significantly reduce the leakage current of oxygen vacancy defects of FE thin films. This is because the Cu and V doping have obvious pinning effect on oxygen vacancy defect. In addition, we find that the oxygen vacancies are pinned by Cu and V atoms due to the fact that the formation energy of oxygen vacancies can be remarkably reduced. So Cu and V doping in PbTiO3 not only induce the leakage current but also improve the fatigue resistance of the FE thin film induced by oxygen vacancies. Moreover, since the ionic radius of V is closer to the ionic radius of Ti than the ionic radius of Cu, V is easier to implement doping to suppress the leakage current caused by the oxygen vacancy defects. These conclusions are of important theoretical significance and application value for improving the performance of FE thin films and their FE memories.
-
Keywords:
- ferroelectric thin films /
- oxygen defect /
- leakage current /
- first-principle
[1] Scott J F, de Araujo C A P 1989 Science 246 1400
[2] Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]
[3] Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413
[4] Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486
[5] de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145
[6] Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750
[7] Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602
[8] Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602
[9] Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014
[10] Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201
[11] Tsymbal E Y, Kohlstedt H 2006 Science 313 181
[12] Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 53 1265]
[13] Jia C, Urban K 2004 Science 303 2001
[14] Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116
[15] Park C, Chadi D 1998 Phys. Rev. B 57 13961
[16] Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 59 1302]
[17] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747
[20] Baldereschi A 1973 Phys. Rev. B 7 5212
[21] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[22] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]
[23] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253
[24] Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382
[25] Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231
-
[1] Scott J F, de Araujo C A P 1989 Science 246 1400
[2] Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]
[3] Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413
[4] Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486
[5] de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145
[6] Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750
[7] Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602
[8] Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602
[9] Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014
[10] Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201
[11] Tsymbal E Y, Kohlstedt H 2006 Science 313 181
[12] Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 53 1265]
[13] Jia C, Urban K 2004 Science 303 2001
[14] Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116
[15] Park C, Chadi D 1998 Phys. Rev. B 57 13961
[16] Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 59 1302]
[17] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747
[20] Baldereschi A 1973 Phys. Rev. B 7 5212
[21] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[22] Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]
[23] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253
[24] Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382
[25] Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231
Catalog
Metrics
- Abstract views: 7369
- PDF Downloads: 212
- Cited By: 0