Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries

Niu Shu-Tong Pan Peng Zhu Bing-Hui Song Han-Yu Jin Yi-Lei Yu Lou-Fei Han Cheng-Zhi Shao Jian-Xiong Chen Xi-Meng

Citation:

Experimental and theoritical research on the dynamical transmission of 30 keV H+ ions through polycarbonate nanocapillaries

Niu Shu-Tong, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Jin Yi-Lei, Yu Lou-Fei, Han Cheng-Zhi, Shao Jian-Xiong, Chen Xi-Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The ions with different incident energies transmitting through insulating nanocapillaries are studied in various configurations. For the low energy ions transmitting through nanocapillaries, Stolterfoht et al.[2002 Phys. Rev. Lett. 88 133201] have observed the guiding effect. Subsequent studies revealed that the self-organizing charge patches on the capillary wall inhibit charge exchange and the ions are transmitted along the capillary axis direction. The high energies of ions transmitting through nanocapillaries are measured, the main transmission mechanism is multiple random inelastic collisions below the surface, and the charge patches will not affect the transmitted ions trajectories. The transmission features of the intermediate energy ions are different from those of the low and high energy ions. The ion beams with intermediate energies have many applications, so it is necessary to understand the transmission features of the intermediate energy ions though nanocapillaries. Recent studies have focused on the transmission of the intermediate energies ions through the nanocapillaries. In the present work, we investigate thie transmission features, such as the two-dimensional transmitted angular distributions, the charge states and position distributions, and the evolution of the relative transmission rate and the charge purity of 30 keV H+ transmitting through nanocapillaries in a polycarbonate membrane at the angles of-1 and-2. The experimental data clearly show that the transmitted H+ ions consist of the transmitted scattering H+ ions, which are located around the direction of the incident beam, and the transmitted guiding H+ ions, which are located around the direction of the capillary axis. With the charges depositing in the capillary, the proportion of the transmitted scattering H+ ions increases and the proportion of the transmitted guiding H+ ion decreases, which directly demonstrates the dynamical evolution of the scattering ions and the guiding ions. To understand the competition between the transmitted scattering ions and the transmitted guiding ions and the physical picture of the intermediate energy ions transmitting through the insulating nanocapillaries, the trajectories of the H+ ions in the capillary and the potential distribution and electric field intensity distribution in the capillary are numerically simulated. The results show that the potential distributions and electric field intensitiesy are different for H+ ions transmitting through nanocapillaries at various tilt angles, and the simulation results are in good agreement with the experimental data. The experimental and simulation results give us a further insight into the mechanisms of guiding and scattering in intermediate energy ions transmitting through nanocapillaries.
    [1]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [2]

    Martin C R 1994 Science 266 1961

    [3]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [4]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [7]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [8]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [11]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [12]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [13]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [16]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [17]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [18]

    Zhu B H, Yang A X, Niu S T, Chen X M, Zhou W, Shao J X 2018 Acta Phys. Sin. 67 013401 (in Chinese)[朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄 2018 67 013401]

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [21]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Meth. B 232 228

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

    [23]

    Yang F J 2008 Atom Physics (Beijing: Higher Education Press) p95 (in Chinese)[杨福家 2008 原子物理学 (北京: 高等教育出版社) 第95页]

  • [1]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509

    [2]

    Martin C R 1994 Science 266 1961

    [3]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [4]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902

    [5]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [6]

    Schiessl K, Tksi K, Solleder B, Lemell C, Burgdrfer J 2009 Phys. Rev. Lett. 102 163201

    [7]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [8]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [9]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [10]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [11]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [12]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901

    [13]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelivre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Instrum. Meth. B 267 674

    [14]

    Juhsz Z, Sulik B, Rcz R, Biri S, J Bereczky R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev. A 82 062903

    [15]

    Lemell C, Burgdrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [16]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Meth. B 330 11

    [17]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [18]

    Zhu B H, Yang A X, Niu S T, Chen X M, Zhou W, Shao J X 2018 Acta Phys. Sin. 67 013401 (in Chinese)[朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄 2018 67 013401]

    [19]

    Mo D 2009 Ph. D. Dissertation (Lanzhou: Institute of Moden Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文 (兰州: 中国科学院近代物理研究所)]

    [20]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [21]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Meth. B 232 228

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

    [23]

    Yang F J 2008 Atom Physics (Beijing: Higher Education Press) p95 (in Chinese)[杨福家 2008 原子物理学 (北京: 高等教育出版社) 第95页]

  • [1] Niu Shu-Tong, Zhan Xin, Hua Qiang, Li Wen-Teng, Zhou Li-Hua, Yang Ting-Gui. Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles. Acta Physica Sinica, 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [2] Wang Dan, Qiu Rong, Chen Bo, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Electronic and optical properties of two-dimensional ice I. Acta Physica Sinica, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [3] Hu Jun,  Gao Yi. Interfacial water and catalysis. Acta Physica Sinica, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [4] Liu Shi-Xu, Chen Wen-Si, Chi Qi-Yuan, Yan Hai. Day-to-day dynamical evolution of network traffic flow with elastic demand. Acta Physica Sinica, 2017, 66(6): 060501. doi: 10.7498/aps.66.060501
    [5] Li Tao, Guan Hong-Zhi, Liang Ke-Ke. Day-to-Day dynamical evolution of network traffic flow under bounded rational view. Acta Physica Sinica, 2016, 65(15): 150502. doi: 10.7498/aps.65.150502
    [6] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [7] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [8] Yan Qian, Lu Cui-Min, Feng Dian-Wen, Yang Wei-Wei, Zhao Jie, Liu Qing-Suo, Ma Yong-Chang. Investigation of carrier transport properties along the c-axis in K0.8Fe2Se2 superconducting crystals. Acta Physica Sinica, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [9] Zhao Sheng-Gui, Jin Ke-Xin, Luo Bing-Cheng, Wang Jian-Yuan, Chen Chang-Le. Photoinduced change in resistance of charge-ordering Gd0.55Sr0.45MnO3 thin film. Acta Physica Sinica, 2012, 61(4): 047501. doi: 10.7498/aps.61.047501
    [10] Wang Shu-Fang, Chen Shan-Shan, Chen Jing-Chun, Yan Guo-Ying, Qiao Xiao-Qi, Liu Fu-Qiang, Wang Jiang-Long, Ding Xue-Cheng, Fu Guang-Sheng. The effects of substrate temperature and oxygen pressure on the crystal strcture and transport properties of Bi2Sr2Co2Oy thermoelectric films deposited by pulsed laser deposition. Acta Physica Sinica, 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [11] Liu Shi-Xu, Guan Hong-Zhi, Yan Hai. Chaotic behavior in the dynamical evolution of network traffic flow and its control. Acta Physica Sinica, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [12] Qiu Ming, Zhang Zhen-Hua, Deng Xiao-Qing. Analysis on transport sensitivity for a carbon atomic wire attached with side groups. Acta Physica Sinica, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [13] Li Gui-Qin. Transport properties of boron-carbon and boron-nitride quantum dot device. Acta Physica Sinica, 2010, 59(7): 4985-4988. doi: 10.7498/aps.59.4985
    [14] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Kong Tao, Hu Ying, Wang Xiao-Ping. The effect of terminal group on the electronic transport property of alkanethiol self-assembled monolayer. Acta Physica Sinica, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [15] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [16] Wang Jian-Yuan, Chen Chang-Le, Gao Guo-Mian, Han Li-An, Jin Ke-Xin. Transport properties and photo-induced effect in La0.82Te0.18MnO3 thin film. Acta Physica Sinica, 2006, 55(12): 6617-6621. doi: 10.7498/aps.55.6617
    [17] Guo Bao-Zeng, Gong Na, Shi Jian-Ying, Wang Zhi-Yu. Monte Carlo simulation of the hole transport properties for wurtzite GaN. Acta Physica Sinica, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] Chen Qin, Li Tong-Cang, Shi Qin-Wei, Wang Xiao-Ping. Effects of open dangling end on the transport properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
    [19] Xiao Chun-Tao, Han Li-An, Xue De-Sheng, Zhao Jun-Hui, H.Kunkel, G.Williams. Magnetic and transport properties of perovskite La067Pb033MnO3. Acta Physica Sinica, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  5166
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2018
  • Accepted Date:  27 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map