Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field

Qin Yan Li Sheng-Chang

Citation:

Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field

Qin Yan, Li Sheng-Chang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • On the basis of the stimulated Raman adiabatic passage technology, we study the conversion of ultracold atoms into diatomic molecules by using a square-shaped pulse field. By the method of adiabatic fidelity, we analyze the dynamical evolution process of the coherent population trapping state for the atom-molecule conversion system. We introduce two adiabatic fidelities to describe the efficiency of ultracold atom-molecule conversion, i.e.:1) the final adiabatic fidelity, which gives the value of the adiabatic fidelity at the end of the evolution:the closer to 1 it is, the higher the conversion efficiency is; 2) the final maximum adiabatic fidelity, which denotes the maximum value that can be achieved at the end of evolution, indicating the highest conversion efficiency. With these two quantities, we discuss how to achieve higher adiabatic fidelity for the coherent population trapping state through optimizing the pulse-delay time and the pulse-laser intensity of the stimulated Raman adiabatic passage. In addition, we also discuss the effects of the width of pulses on the ultracold atom-molecule conversion efficiency and the feasibility of continuous light. It is shown that the final adiabatic fidelity of the coherent population trapping state demonstrates a large periodic oscillation with the pulse-laser intensity. By calculating and analyzing the final adiabatic fidelity and the final maximum adiabatic fidelity, we obtain the conditions for higher efficiency conversion, which gives the best choice of the pulse-laser intensity, the pulse-delay time, and the width of pulses. The results show that the scheme of square-shaped pulses we discussed has obvious advantages compared with that of Gaussian-shaped pulses, which can achieve high adiabatic fidelity and realize higher ultracold atom-molecule conversion efficiency via employing the pulse-laser field with low intensity. Further detailed comparison between the square-shaped pulses and the Gaussian-shaped pulses is also given. Particularly, we find that the final adiabatic fidelity shows a periodic oscillation with the pulse width, which means that the high efficiency atom-molecule conversion can be achieved by using a pulse field with small width. Moreover, we find that the high efficiency conversion can also be achieved by using special continuous light under certain conditions.
      Corresponding author: Li Sheng-Chang, scli@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305120, 11605126) and the Natural Science Fundamental Research Program of Shaanxi Province of China (Grant No. 2015JQ1017).
    [1]

    Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [4]

    Jin D S, Ye J 2012 Chem. Rev. 112 4801

    [5]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [6]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003

    [7]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

    [8]

    Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311

    [9]

    Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612

    [10]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903

    [11]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 64 173701]

    [13]

    Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402

    [14]

    Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406

    [15]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419

    [16]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [18]

    Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705

    [19]

    Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613

    [20]

    Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 63 193701]

    [21]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 58 5311]

    [22]

    Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001

    [23]

    Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 60 110304]

    [24]

    Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 66 213301]

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Efimov V 1970 Phys. Lett. B 33 563

    [27]

    Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631

    [28]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [29]

    Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [30]

    Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903

    [31]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [32]

    Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615

  • [1]

    Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [4]

    Jin D S, Ye J 2012 Chem. Rev. 112 4801

    [5]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [6]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003

    [7]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

    [8]

    Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311

    [9]

    Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612

    [10]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903

    [11]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 64 173701]

    [13]

    Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402

    [14]

    Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406

    [15]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419

    [16]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [18]

    Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705

    [19]

    Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613

    [20]

    Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 63 193701]

    [21]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 58 5311]

    [22]

    Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001

    [23]

    Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 60 110304]

    [24]

    Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 66 213301]

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Efimov V 1970 Phys. Lett. B 33 563

    [27]

    Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631

    [28]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [29]

    Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [30]

    Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903

    [31]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [32]

    Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615

  • [1] Han Yan-Chen, Li Yu-Dong, Li Wei. Relationship between coherent population trapping oscillation and Raman detuning. Acta Physica Sinica, 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] Wen Ya-Fei, Tian Jian-Feng, Wang Zhi-Qiang, Zhuang Yuan-Yuan. Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble. Acta Physica Sinica, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [3] Wang Zi-Yu, Wei Jing-Le, Xu Wen-Qi, Jiang Jia-Ming, Huang Yi-Fan, Liu Wei-Min. Excited state proton transfer processes of pyranine studied by femtosecond stimulated Raman spectroscopy. Acta Physica Sinica, 2020, 69(19): 198201. doi: 10.7498/aps.69.20200230
    [4] Zhang Lu, Yan Lu-Yao, Bao Hui-Han, Chai Xiao-Qian, Ma Dan-Dan, Wu Qian-Nan, Xia Ling-Chen, Yao Dan, Qian Jing. Theoretical research on an efficient population transfer based on two different laser pulse sequences. Acta Physica Sinica, 2017, 66(21): 213301. doi: 10.7498/aps.66.213301
    [5] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] Zhao Xiu-Niao, Sun Jian-An, Dou Fu-Quan. Effect of external field shape on the ultracold atom-polymer molecule conversion efficiency. Acta Physica Sinica, 2014, 63(22): 220302. doi: 10.7498/aps.63.220302
    [8] Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min. Investigation of experimental parameters of coherent population trapping with cesium vapor cell. Acta Physica Sinica, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [9] Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B. Acta Physica Sinica, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [10] Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state. Acta Physica Sinica, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [11] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [12] Li Guan-Qiang, Peng Ping. Effects of external field parameters on conversion from ultracold atoms to heteronuclear triatomic molecules. Acta Physica Sinica, 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [13] Meng Shao-Ying, Wu Wei. Adiabatic fidelity for atom-dimer conversion system in stimulated Raman adiabatic passage. Acta Physica Sinica, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [14] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [15] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [16] Wang Zhong-Chun. Effect of external field on the fidelity of quantum states in the two-atom Tavis-Cummings model. Acta Physica Sinica, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [17] Zhou Yan-Wei, Ye Cun-Yun, Lin Qiang, Wang Yu-Zhu. Control of population and atomic coherence by adiabatic rapid passage. Acta Physica Sinica, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [18] Xie Min, Ling Lin, Yang Guo-Jian. Velocity-selective coherent population trapping of a nondegenerate Λ three-level atom. Acta Physica Sinica, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [19] Wang Li-Qiang, Li Yong-Fang, Cao Dong-Mei, Bi Dong-Yan, Zhang Chong-Jun, Cheng Yan-Chun. Study on coherent phase modulation of coherent population trapping in V-type atomic system. Acta Physica Sinica, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [20] Liu Tang-Kun, Wang Ji-Suo, Liu Xiao-Jun, Zhan Ming-Sheng. . Acta Physica Sinica, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
Metrics
  • Abstract views:  6163
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2018
  • Accepted Date:  27 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map