-
On the basis of the stimulated Raman adiabatic passage technology, we study the conversion of ultracold atoms into diatomic molecules by using a square-shaped pulse field. By the method of adiabatic fidelity, we analyze the dynamical evolution process of the coherent population trapping state for the atom-molecule conversion system. We introduce two adiabatic fidelities to describe the efficiency of ultracold atom-molecule conversion, i.e.:1) the final adiabatic fidelity, which gives the value of the adiabatic fidelity at the end of the evolution:the closer to 1 it is, the higher the conversion efficiency is; 2) the final maximum adiabatic fidelity, which denotes the maximum value that can be achieved at the end of evolution, indicating the highest conversion efficiency. With these two quantities, we discuss how to achieve higher adiabatic fidelity for the coherent population trapping state through optimizing the pulse-delay time and the pulse-laser intensity of the stimulated Raman adiabatic passage. In addition, we also discuss the effects of the width of pulses on the ultracold atom-molecule conversion efficiency and the feasibility of continuous light. It is shown that the final adiabatic fidelity of the coherent population trapping state demonstrates a large periodic oscillation with the pulse-laser intensity. By calculating and analyzing the final adiabatic fidelity and the final maximum adiabatic fidelity, we obtain the conditions for higher efficiency conversion, which gives the best choice of the pulse-laser intensity, the pulse-delay time, and the width of pulses. The results show that the scheme of square-shaped pulses we discussed has obvious advantages compared with that of Gaussian-shaped pulses, which can achieve high adiabatic fidelity and realize higher ultracold atom-molecule conversion efficiency via employing the pulse-laser field with low intensity. Further detailed comparison between the square-shaped pulses and the Gaussian-shaped pulses is also given. Particularly, we find that the final adiabatic fidelity shows a periodic oscillation with the pulse width, which means that the high efficiency atom-molecule conversion can be achieved by using a pulse field with small width. Moreover, we find that the high efficiency conversion can also be achieved by using special continuous light under certain conditions.
-
Keywords:
- adiabatic fidelity /
- atom-molecule conversion /
- coherent population trapping state /
- stimulated raman adiabatic passage
[1] Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632
[2] DeMille D 2002 Phys. Rev. Lett. 88 067901
[3] Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153
[4] Jin D S, Ye J 2012 Chem. Rev. 112 4801
[5] Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493
[6] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003
[7] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003
[8] Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311
[9] Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612
[10] Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903
[11] Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148
[12] Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 64 173701]
[13] Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402
[14] Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406
[15] Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419
[16] Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570
[17] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151
[18] Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705
[19] Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613
[20] Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 63 193701]
[21] Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 58 5311]
[22] Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001
[23] Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 60 110304]
[24] Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 66 213301]
[25] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[26] Efimov V 1970 Phys. Lett. B 33 563
[27] Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631
[28] Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410
[29] Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406
[30] Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903
[31] Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403
[32] Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615
-
[1] Qian J, Zhang W P, Ling H Y 2010 Phys. Rev. A 81 013632
[2] DeMille D 2002 Phys. Rev. Lett. 88 067901
[3] Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153
[4] Jin D S, Ye J 2012 Chem. Rev. 112 4801
[5] Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493
[6] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003
[7] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003
[8] Schuster D I, Bishop L S, Chuang I L, DeMille D, Schoelkopf R J 2011 Phys. Rev. A 83 012311
[9] Walter K, Stickler B A, Hornberger K 2016 Phys. Rev. A 93 063612
[10] Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2001 Phys. Rev. Lett. 88 013903
[11] Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148
[12] Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 64 173701]
[13] Vanhaecke N, Meier U, Andrist M, Meier B H, Merkt F 2007 Phys. Rev. A 75 031402
[14] Rangwala S A, Junglen T, Rieger T, Pinkse P W H, Rempe G 2003 Phys. Rev. A 67 043406
[15] Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419
[16] Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570
[17] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151
[18] Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Rui J, Zhao B, Pan J W, Tiemann E 2017 Phys. Rev. A 96 062705
[19] Kallush S, Carini J L, Gould P L, Kosloff R 2017 Phys. Rev. A 96 053613
[20] Zhao Y T, Yuan J P, Ji Z H, Li Z H, Meng T F, Liu T, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 193701 (in Chinese)[赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂 2014 63 193701]
[21] Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese)[孟少英, 吴炜 2009 58 5311]
[22] Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W, Jamison A O 2017 Phys. Rev. Lett. 119 143001
[23] Li G Q, Peng P 2011 Acta Phys. Sin. 60 110304 (in Chinese)[李冠强, 彭娉 2011 60 110304]
[24] Zhang L, Yan L Y, Bao H H, Chai X Q, Ma D D, Wu Q N, Xia L C, Yao D, Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)[张露, 严璐瑶, 鲍洄含, 柴晓茜, 马丹丹, 吴倩楠, 夏凌晨, 姚丹, 钱静 2017 66 213301]
[25] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[26] Efimov V 1970 Phys. Lett. B 33 563
[27] Dou F Q, Fu L B, Liu J 2013 Phys. Rev. A 87 043631
[28] Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410
[29] Pu H, Maenner P, Zhang W P, Ling H Y 2007 Phys. Rev. Lett. 98 050406
[30] Itin A P, Watanabe S 2007 Phys. Rev. Lett. 99 223903
[31] Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403
[32] Ling H Y, Maenner P, Zhang W P, Pu H 2007 Phys. Rev. A 75 033615
Catalog
Metrics
- Abstract views: 6163
- PDF Downloads: 77
- Cited By: 0