-
Two-dimensional ice is a new type of atomic-scale material obtained by typical atomic manufacturing techniques. Its structure and nucleation growth play an essential role in many fields such as material science, tribology, biology, atmospheric science and planetary science. Although the structural properties of two-dimensional ice have been investigated extensively, little is known about its electronic and optical properties. In this paper, the main electronic, optical, dielectric properties and infrared spectra of two-dimensional ice I at zero temperature are calculated by density functional theory and linear response theory. The study reveals that the two-dimensional ice I is an indirect band gap and its optical properties show anisotropic lattice. And the absorption energy range for the two-dimensional ice I is in the ultraviolet region of the spectrum (> 3.2 eV) and the visible region of the spectrum (between 2 and 3.2 eV), respectively. Secondly, the radial distribution function and the vibrational density of states of the two-dimensional ice I at a finite temperature are simulated by ab initio molecular dynamics method. For the structure of the two-dimensional ice I, whether SCAN or PBE functional, after considering the vdW effect, there is almost no effect on the atomic distance, while by comparison, the SCAN functional and the PBE functional are quite different. Therefore, it can be seen that the main reason for affecting the distance between atoms in the structure is due to the consideration of the strong confinement effect of SCAN. In terms of the vibration characteristics of two-dimensional ice I, comparing with PBE and vdW-DF-ob86, the first two peaks of the IR spectrum of SCAN + rVV10 functional show blue shift, and the two peaks in the high frequency region present the red shift. Therefore, considering the strong confinement effect of SCAN, the intermolecular tensile vibration of two-dimensional ice I becomes stronger, while the intramolecular H—O—H bending vibration and O—H bond tensile vibration become weaker. The effect of van der Waals action on vibration properties is not obvious. Furthermore, we investigate the temperature effects on the vibration spectra of two-dimensional ice I. It is found that with the increase of temperature, the intermolecular librational mode weakens at a low frequency, the intramolecular bending and stretching bands gradually broaden, and the intramolecular O-H stretching peak presents the blue-shifts with temperature rising. The results of this paper reveal the electronic structure of atomic-scale two-dimensional ice I, and demonstrate its unique optical absorption mechanism, which is helpful in further experimentally characterizing and manipulating the two-dimensional ice on an atomic scale. Since the two-dimensional ice on the surface can promote or inhibit the formation of three-dimensional ice, it has potential applications in designing and developing the anti-icing materials. In addition, two-dimensional ice itself can also be used as a unique two-dimensional material, providing a brand-new standard material for high-temperature superconductivity, deep-ultraviolet detection, cryo-electron microscopy imaging.
-
Keywords:
- atomic-scale two-dimensional ice I /
- electronic structure /
- optical properties /
- theoretical simulation
[1] Hetzel R, Hampel A 2005 Nature 435 81Google Scholar
[2] 孙贤明, 韩一平 2006 55 682Google Scholar
Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682Google Scholar
[3] Zhu T, Li J, Jin Y, Liang Y, Ma G 2008 Int. J. Environ. Sci. Te 5 375Google Scholar
[4] Tao W K, Chen J P, Li Z Q, Wang C, Zhang C D 2012 Rev. Geophys. 50 Rg2001Google Scholar
[5] Zheng S L, Li C, Fu Q T, Hu W, Xiang T F, Wang Q, Du M P, Liu X C, Chen Z 2016 Mater. Des. 93 261Google Scholar
[6] 刘胜兴, 李整林 2017 66 234301Google Scholar
Liu S X, Li Z L 2017 Acta Phys. Sin. 66 234301Google Scholar
[7] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程 2018 67 196401Google Scholar
Zhang T X, Wang Z J, Wang L L, Li J J, Lin X, Wang J C 2018 Acta Phys. Sin. 67 196401Google Scholar
[8] Lee H 2019 J. Mol. Graph. Model. 87 48Google Scholar
[9] Bragg W H 1924 Science 60 139Google Scholar
[10] Bjerrum N 1952 Science 115 385Google Scholar
[11] Moore E B, Molinero V 2011 Phys. Chem. Chem. Phys. 13 20008Google Scholar
[12] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. USA 109 1041Google Scholar
[13] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar
[14] Li T, Donadio D, Russo G, Galli G 2011 Phys. Chem. Chem. Phys. 13 19807Google Scholar
[15] Radhakrishnan R, Trout B L 2003 J. Am. Chem. Soc. 125 7743Google Scholar
[16] Jovanović D, Zagorac D, Schön J C, Milovanović B, Zagorac J 2020 Z. Naturforsch. B. 75 125Google Scholar
[17] Ghosh M, Pradipkanti L, Rai V, Satapathy D K, Vayalamkuzhi P, Jaiswal M 2015 Appl. Phys. Lett. 106 241902Google Scholar
[18] Ma M, Tocci G, Michaelides A, Aeppli G 2016 Nat. Mater. 15 66Google Scholar
[19] Adachi Y, Koga K 2020 J. Chem. Phys. 153 114501Google Scholar
[20] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar
[21] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar
[22] Wang F C, Wu H A, Geim A K 2015 Nature 528 16146Google Scholar
[23] Algara-Siller G, Lehtinen O, Kaiser U 2015 Nature 528 16149Google Scholar
[24] Zhu Y, Wang F, Bai J, Zeng X C, Wu H 2015 ACS Nano 9 12197Google Scholar
[25] Corsetti F, Matthews P, Artacho E 2016 Sci. Rep. 6 18651Google Scholar
[26] Zhu Y, Wang F, Wu H 2017 J. Chem. Phys. 146 134703Google Scholar
[27] Chen J, Zen A, Brandenburg J G, Alfe D, Michaelides A 2016 Phys. Rev. B. 94 220102Google Scholar
[28] Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381Google Scholar
[29] Corem G, Kole P R, Zhu J, Kravchuk T, Manson J R, Alexandrowicz G 2013 J. Phys. Chem. C. 117 23657Google Scholar
[30] Lin C, Avidor N, Corem G, Godsi O, Alexandrowicz G, Darling G R, Hodgson A 2018 Phys. Rev. Lett. 120 076101Google Scholar
[31] Xu K, Cao P, Heath J R 2010 Science 329 1188Google Scholar
[32] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondracek M, Jelinek P, Wang E, Jiang Y 2018 Nat. Commun. 9 122Google Scholar
[33] Kimmel G A, Matthiesen J, Baer M, Mundy C J, Petrik N G, Smith R S, Dohnalek Z, Kay B D 2009 J. Am. Chem. Soc. 131 12838Google Scholar
[34] Lupi L, Kastelowitz N, Molinero V 2014 Phys. Chem. Chem. Phys. 141 18c508Google Scholar
[35] Chakraborty S, Kumar H, Dasgupta C, Maiti P K 2017 Acc. Chem. Res. 50 2139Google Scholar
[36] Neek-Amal M, Lohrasebi A, Mousaei M, Shayeganfar F, Radha B, Peeters F M 2018 Appl. Phys. Lett. 113 083101Google Scholar
[37] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X-Z, Francisco J S, Zeng X C, Xu L-M, Wang E-G, Jiang Y 2020 Nature 577 60Google Scholar
[38] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar
[39] Fukazawa H, Mae S, Ikeda S (Steffen K ed.) 2000 Annals of Glaciology (Vol. 31) 2000 pp247–251
[40] Stefanutti E, Bove L E, Alabarse F G, Lelong G, Bruni F, Ricci M A 2019 J. Chem. Phys. 150 224504Google Scholar
[41] Futrelle R P, McGinty D J 1971 Chem. Phys. Lett. 12 285Google Scholar
[42] Heislbetz S, Rauhut G 2010 J. Chem. Phys. 132 124102Google Scholar
[43] Weymuth T, Haag M P, Kiewisch K, Luber S, Schenk S, Jacob C R, Herrmann C, Neugebauer J, Reiher M 2012 J. Comb. Chem. 33 2186Google Scholar
[44] Mathias G, Baer M D 2011 J. Chem. Theory. Comput 7 2028Google Scholar
[45] Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T, Nilsson A 2017 Science 358 1589Google Scholar
[46] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C. 123 14880Google Scholar
[47] Aragones J L, MacDowell L G, Vega C 2011 J. Phys. Chem. A. 115 5745Google Scholar
[48] Zangi R, Mark A E 2003 Phys. Rev. Lett. 91 025502Google Scholar
[49] Sobrino Fernández M, Peeters F M, Neek-Amal M 2016 Phys. Rev. B. 94 045436Google Scholar
[50] Chen J, Schusteritsch G, Pickard C J, Salzmann C G, Michaelides A 2016 Phys. Rev. Lett. 116 025501Google Scholar
[51] Ghasemi S, Alihosseini M, Peymanirad F, Jalali H, Ketabi S A, Khoeini F, Neek-Amal M 2020 Phys. Rev. B 101 184202Google Scholar
[52] Santra B, Klimes J, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M 2013 J. Chem. Phys. 139 154702Google Scholar
[53] Sabatini R, Gorni T, de Gironcoli S 2013 Phys. Rev. B 87 041108Google Scholar
[54] Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402Google Scholar
[55] Zheng L X, Chen M H, Sun Z R, Ko H Y, Santra B, Dhuvad P, Wu X F 2018 J. Chem. Phys. 148 164505Google Scholar
[56] Peng H, Yang Z-H, Perdew J P, Sun J 2016 Phys. Rev. X. 6 041005Google Scholar
[57] Wiktor J, Ambrosio F, Pasquarello A 2017 J. Chem. Phys. 147 2161012Google Scholar
[58] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[59] Klimeš J, Bowler D R, Michaelides A 2009 J. Phys.: Condens. Matter. 22 022201Google Scholar
[60] Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131Google Scholar
[61] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[62] Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar
[63] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S 2017 J. Phys.: Condens. Matter. 29 465901Google Scholar
[64] Rottger K, Endriss A, Ihringer J, Doyle S, Kuhs W F 1994 Acta. Crystallogr. B 50 644Google Scholar
[65] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar
[66] Buch V, Sandler P, Sadlej J 1998 J. Phys. Chem. B 102 8641Google Scholar
[67] Fang C, Li W-F, Koster R S, Klimeš J, van Blaaderen A, van Huis M A 2015 Phys. Chem. Chem. Phys. 17 365Google Scholar
[68] Yoffe A D 1977 J. Franklin. I 303 105Google Scholar
[69] Roessler D M 1965 Br. J. Appl. Phys. 16 1119Google Scholar
[70] de Koning M, Fazzio A, da Silva A J R, Antonelli A 2016 Phys. Chem. Chem. Phys. 18 4652Google Scholar
[71] Garbuio V, Cascella M, Kupchak I, Pulci O, Seitsonen A P 2015 J. Chem. Phys. 143 084507Google Scholar
[72] Perakis F, Hamm P 2012 Phys. Chem. Chem. Phys. 14 6250Google Scholar
[73] Moberg D R, Straight S C, Knight C, Paesani F 2017 J. Phys. Chem. Lett. 8 2579Google Scholar
[74] Shi L, Skinner J L, Jansen T L C 2016 Phys. Chem. Chem. Phys. 18 3772Google Scholar
[75] Liu H, Wang Y, Bowman J M 2012 J. Phys. Chem. Lett. 3 3671Google Scholar
[76] Whalley E 1977 Can. J. Chem. 55 3429Google Scholar
[77] Hernandez J, Uras N, Devlin J P 1998 J. Chem. Phys. 108 4525Google Scholar
-
图 1 二维冰相I的结构的顶视图、斜视图和侧视图. 顶部水层的H和O原子分别用白色和红色圆球表示, 底部水层的H和O原子分别用深蓝色和浅蓝色圆球表示
Figure 1. Top, oblique and side views of the structure of two-dimensional ice I. H and O atoms in the top water layer are denoted as white and red spheres, respectively. H and O atoms in the bottom water layer are shown by dark blue and light blue spheres, respectively.
图 2 在120 K温度下, 二维冰相I在不同泛函的径向分布函数(gOO, gOH和gHH)及与冰Ih, XV相在100 K的gOO的对比. 插图显示了在0.95—1.05 Å距离范围内的gOH的曲线图
Figure 2. Radial distribution functions (gOO, gOH and gHH) of two-dimensional ice I in different functionals at 120 K and the comparison with the gOO of the ice Ih and XV phase at 100 K. The insets show elaborations of the gOH plots within the 0.95–1.05 Å distance range.
图 5 二维冰相I在不同泛函的介电函数的实部 (a), (c), (e)和虚部(b), (d), (f). 其中, x和y表示平面内分量, 而z分量垂直于x-y平面. 粉色虚线箭头表示能隙
Figure 5. The real (a), (c), (e) and imaginary (b), (d), (f) part of dielectric function of the two-dimensional ice I in different functionals. Here, x and y denote the in-plane components, while z component is perpendicular to x-y plane. The pink-dashed arrows refer to the energy gap.
图 6 (a)谐波近似下, 不同泛函PBE, vdW-DF-ob86和SCAN + rVV10的二维冰相I的IR; (b) 二维冰相I在不同泛函的振动态密度
Figure 6. (a) IR of the two-dimensional ice I with different functionals PBE, vdW-DF-ob86 and SCAN+rVV10 under harmonic approximation; (b) the vibrational density of states of the two-dimensional ice I in different functionals.
图 7 (a)二维冰相I和实验[72,76]及理论的冰Ih相[75]的分子内伸缩振动谱; (b) 二维冰相I和实验[77]及理论的其他冰相[75]的分子内弯曲振动谱
Figure 7. (a) Intramolecular stretching vibration spectra of two-dimensional ice I and experimental[72,76] and theoretical ice Ih[75]; (b) intramolecular bending vibration spectra of two-dimensional ice I and experimental[77] crystalline ice and theoretical hexagonal ice[75].
-
[1] Hetzel R, Hampel A 2005 Nature 435 81Google Scholar
[2] 孙贤明, 韩一平 2006 55 682Google Scholar
Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682Google Scholar
[3] Zhu T, Li J, Jin Y, Liang Y, Ma G 2008 Int. J. Environ. Sci. Te 5 375Google Scholar
[4] Tao W K, Chen J P, Li Z Q, Wang C, Zhang C D 2012 Rev. Geophys. 50 Rg2001Google Scholar
[5] Zheng S L, Li C, Fu Q T, Hu W, Xiang T F, Wang Q, Du M P, Liu X C, Chen Z 2016 Mater. Des. 93 261Google Scholar
[6] 刘胜兴, 李整林 2017 66 234301Google Scholar
Liu S X, Li Z L 2017 Acta Phys. Sin. 66 234301Google Scholar
[7] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程 2018 67 196401Google Scholar
Zhang T X, Wang Z J, Wang L L, Li J J, Lin X, Wang J C 2018 Acta Phys. Sin. 67 196401Google Scholar
[8] Lee H 2019 J. Mol. Graph. Model. 87 48Google Scholar
[9] Bragg W H 1924 Science 60 139Google Scholar
[10] Bjerrum N 1952 Science 115 385Google Scholar
[11] Moore E B, Molinero V 2011 Phys. Chem. Chem. Phys. 13 20008Google Scholar
[12] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. USA 109 1041Google Scholar
[13] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar
[14] Li T, Donadio D, Russo G, Galli G 2011 Phys. Chem. Chem. Phys. 13 19807Google Scholar
[15] Radhakrishnan R, Trout B L 2003 J. Am. Chem. Soc. 125 7743Google Scholar
[16] Jovanović D, Zagorac D, Schön J C, Milovanović B, Zagorac J 2020 Z. Naturforsch. B. 75 125Google Scholar
[17] Ghosh M, Pradipkanti L, Rai V, Satapathy D K, Vayalamkuzhi P, Jaiswal M 2015 Appl. Phys. Lett. 106 241902Google Scholar
[18] Ma M, Tocci G, Michaelides A, Aeppli G 2016 Nat. Mater. 15 66Google Scholar
[19] Adachi Y, Koga K 2020 J. Chem. Phys. 153 114501Google Scholar
[20] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar
[21] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar
[22] Wang F C, Wu H A, Geim A K 2015 Nature 528 16146Google Scholar
[23] Algara-Siller G, Lehtinen O, Kaiser U 2015 Nature 528 16149Google Scholar
[24] Zhu Y, Wang F, Bai J, Zeng X C, Wu H 2015 ACS Nano 9 12197Google Scholar
[25] Corsetti F, Matthews P, Artacho E 2016 Sci. Rep. 6 18651Google Scholar
[26] Zhu Y, Wang F, Wu H 2017 J. Chem. Phys. 146 134703Google Scholar
[27] Chen J, Zen A, Brandenburg J G, Alfe D, Michaelides A 2016 Phys. Rev. B. 94 220102Google Scholar
[28] Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381Google Scholar
[29] Corem G, Kole P R, Zhu J, Kravchuk T, Manson J R, Alexandrowicz G 2013 J. Phys. Chem. C. 117 23657Google Scholar
[30] Lin C, Avidor N, Corem G, Godsi O, Alexandrowicz G, Darling G R, Hodgson A 2018 Phys. Rev. Lett. 120 076101Google Scholar
[31] Xu K, Cao P, Heath J R 2010 Science 329 1188Google Scholar
[32] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondracek M, Jelinek P, Wang E, Jiang Y 2018 Nat. Commun. 9 122Google Scholar
[33] Kimmel G A, Matthiesen J, Baer M, Mundy C J, Petrik N G, Smith R S, Dohnalek Z, Kay B D 2009 J. Am. Chem. Soc. 131 12838Google Scholar
[34] Lupi L, Kastelowitz N, Molinero V 2014 Phys. Chem. Chem. Phys. 141 18c508Google Scholar
[35] Chakraborty S, Kumar H, Dasgupta C, Maiti P K 2017 Acc. Chem. Res. 50 2139Google Scholar
[36] Neek-Amal M, Lohrasebi A, Mousaei M, Shayeganfar F, Radha B, Peeters F M 2018 Appl. Phys. Lett. 113 083101Google Scholar
[37] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X-Z, Francisco J S, Zeng X C, Xu L-M, Wang E-G, Jiang Y 2020 Nature 577 60Google Scholar
[38] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar
[39] Fukazawa H, Mae S, Ikeda S (Steffen K ed.) 2000 Annals of Glaciology (Vol. 31) 2000 pp247–251
[40] Stefanutti E, Bove L E, Alabarse F G, Lelong G, Bruni F, Ricci M A 2019 J. Chem. Phys. 150 224504Google Scholar
[41] Futrelle R P, McGinty D J 1971 Chem. Phys. Lett. 12 285Google Scholar
[42] Heislbetz S, Rauhut G 2010 J. Chem. Phys. 132 124102Google Scholar
[43] Weymuth T, Haag M P, Kiewisch K, Luber S, Schenk S, Jacob C R, Herrmann C, Neugebauer J, Reiher M 2012 J. Comb. Chem. 33 2186Google Scholar
[44] Mathias G, Baer M D 2011 J. Chem. Theory. Comput 7 2028Google Scholar
[45] Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T, Nilsson A 2017 Science 358 1589Google Scholar
[46] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C. 123 14880Google Scholar
[47] Aragones J L, MacDowell L G, Vega C 2011 J. Phys. Chem. A. 115 5745Google Scholar
[48] Zangi R, Mark A E 2003 Phys. Rev. Lett. 91 025502Google Scholar
[49] Sobrino Fernández M, Peeters F M, Neek-Amal M 2016 Phys. Rev. B. 94 045436Google Scholar
[50] Chen J, Schusteritsch G, Pickard C J, Salzmann C G, Michaelides A 2016 Phys. Rev. Lett. 116 025501Google Scholar
[51] Ghasemi S, Alihosseini M, Peymanirad F, Jalali H, Ketabi S A, Khoeini F, Neek-Amal M 2020 Phys. Rev. B 101 184202Google Scholar
[52] Santra B, Klimes J, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M 2013 J. Chem. Phys. 139 154702Google Scholar
[53] Sabatini R, Gorni T, de Gironcoli S 2013 Phys. Rev. B 87 041108Google Scholar
[54] Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402Google Scholar
[55] Zheng L X, Chen M H, Sun Z R, Ko H Y, Santra B, Dhuvad P, Wu X F 2018 J. Chem. Phys. 148 164505Google Scholar
[56] Peng H, Yang Z-H, Perdew J P, Sun J 2016 Phys. Rev. X. 6 041005Google Scholar
[57] Wiktor J, Ambrosio F, Pasquarello A 2017 J. Chem. Phys. 147 2161012Google Scholar
[58] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[59] Klimeš J, Bowler D R, Michaelides A 2009 J. Phys.: Condens. Matter. 22 022201Google Scholar
[60] Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131Google Scholar
[61] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[62] Hamann D R 2013 Phys. Rev. B 88 085117Google Scholar
[63] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S 2017 J. Phys.: Condens. Matter. 29 465901Google Scholar
[64] Rottger K, Endriss A, Ihringer J, Doyle S, Kuhs W F 1994 Acta. Crystallogr. B 50 644Google Scholar
[65] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar
[66] Buch V, Sandler P, Sadlej J 1998 J. Phys. Chem. B 102 8641Google Scholar
[67] Fang C, Li W-F, Koster R S, Klimeš J, van Blaaderen A, van Huis M A 2015 Phys. Chem. Chem. Phys. 17 365Google Scholar
[68] Yoffe A D 1977 J. Franklin. I 303 105Google Scholar
[69] Roessler D M 1965 Br. J. Appl. Phys. 16 1119Google Scholar
[70] de Koning M, Fazzio A, da Silva A J R, Antonelli A 2016 Phys. Chem. Chem. Phys. 18 4652Google Scholar
[71] Garbuio V, Cascella M, Kupchak I, Pulci O, Seitsonen A P 2015 J. Chem. Phys. 143 084507Google Scholar
[72] Perakis F, Hamm P 2012 Phys. Chem. Chem. Phys. 14 6250Google Scholar
[73] Moberg D R, Straight S C, Knight C, Paesani F 2017 J. Phys. Chem. Lett. 8 2579Google Scholar
[74] Shi L, Skinner J L, Jansen T L C 2016 Phys. Chem. Chem. Phys. 18 3772Google Scholar
[75] Liu H, Wang Y, Bowman J M 2012 J. Phys. Chem. Lett. 3 3671Google Scholar
[76] Whalley E 1977 Can. J. Chem. 55 3429Google Scholar
[77] Hernandez J, Uras N, Devlin J P 1998 J. Chem. Phys. 108 4525Google Scholar
Catalog
Metrics
- Abstract views: 6189
- PDF Downloads: 192
- Cited By: 0