-
Two-dimensional ice is a new type of atomic-scale material obtained by typical atomic manufacturing techniques. Its structure and nucleation growth play an essential role in many fields such as material science, tribology, biology, atmospheric science and planetary science. Although the structural properties of two-dimensional ice have been investigated extensively, little is known about its electronic and optical properties. In this paper, the main electronic, optical, dielectric properties and infrared spectra of two-dimensional ice I at zero temperature are calculated by density functional theory and linear response theory. The study reveals that the two-dimensional ice I is an indirect band gap and its optical properties show anisotropic lattice. And the absorption energy range for the two-dimensional ice I is in the ultraviolet region of the spectrum (> 3.2 eV) and the visible region of the spectrum (between 2 and 3.2 eV), respectively. Secondly, the radial distribution function and the vibrational density of states of the two-dimensional ice I at a finite temperature are simulated by ab initio molecular dynamics method. For the structure of the two-dimensional ice I, whether SCAN or PBE functional, after considering the vdW effect, there is almost no effect on the atomic distance, while by comparison, the SCAN functional and the PBE functional are quite different. Therefore, it can be seen that the main reason for affecting the distance between atoms in the structure is due to the consideration of the strong confinement effect of SCAN. In terms of the vibration characteristics of two-dimensional ice I, comparing with PBE and vdW-DF-ob86, the first two peaks of the IR spectrum of SCAN + rVV10 functional show blue shift, and the two peaks in the high frequency region present the red shift. Therefore, considering the strong confinement effect of SCAN, the intermolecular tensile vibration of two-dimensional ice I becomes stronger, while the intramolecular H—O—H bending vibration and O—H bond tensile vibration become weaker. The effect of van der Waals action on vibration properties is not obvious. Furthermore, we investigate the temperature effects on the vibration spectra of two-dimensional ice I. It is found that with the increase of temperature, the intermolecular librational mode weakens at a low frequency, the intramolecular bending and stretching bands gradually broaden, and the intramolecular O-H stretching peak presents the blue-shifts with temperature rising. The results of this paper reveal the electronic structure of atomic-scale two-dimensional ice I, and demonstrate its unique optical absorption mechanism, which is helpful in further experimentally characterizing and manipulating the two-dimensional ice on an atomic scale. Since the two-dimensional ice on the surface can promote or inhibit the formation of three-dimensional ice, it has potential applications in designing and developing the anti-icing materials. In addition, two-dimensional ice itself can also be used as a unique two-dimensional material, providing a brand-new standard material for high-temperature superconductivity, deep-ultraviolet detection, cryo-electron microscopy imaging.
-
Keywords:
- atomic-scale two-dimensional ice I /
- electronic structure /
- optical properties /
- theoretical simulation
[1] Hetzel R, Hampel A 2005 Nature 435 81
Google Scholar
[2] 孙贤明, 韩一平 2006 55 682
Google Scholar
Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682
Google Scholar
[3] Zhu T, Li J, Jin Y, Liang Y, Ma G 2008 Int. J. Environ. Sci. Te 5 375
Google Scholar
[4] Tao W K, Chen J P, Li Z Q, Wang C, Zhang C D 2012 Rev. Geophys. 50 Rg2001
Google Scholar
[5] Zheng S L, Li C, Fu Q T, Hu W, Xiang T F, Wang Q, Du M P, Liu X C, Chen Z 2016 Mater. Des. 93 261
Google Scholar
[6] 刘胜兴, 李整林 2017 66 234301
Google Scholar
Liu S X, Li Z L 2017 Acta Phys. Sin. 66 234301
Google Scholar
[7] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程 2018 67 196401
Google Scholar
Zhang T X, Wang Z J, Wang L L, Li J J, Lin X, Wang J C 2018 Acta Phys. Sin. 67 196401
Google Scholar
[8] Lee H 2019 J. Mol. Graph. Model. 87 48
Google Scholar
[9] Bragg W H 1924 Science 60 139
Google Scholar
[10] Bjerrum N 1952 Science 115 385
Google Scholar
[11] Moore E B, Molinero V 2011 Phys. Chem. Chem. Phys. 13 20008
Google Scholar
[12] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. USA 109 1041
Google Scholar
[13] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60
Google Scholar
[14] Li T, Donadio D, Russo G, Galli G 2011 Phys. Chem. Chem. Phys. 13 19807
Google Scholar
[15] Radhakrishnan R, Trout B L 2003 J. Am. Chem. Soc. 125 7743
Google Scholar
[16] Jovanović D, Zagorac D, Schön J C, Milovanović B, Zagorac J 2020 Z. Naturforsch. B. 75 125
Google Scholar
[17] Ghosh M, Pradipkanti L, Rai V, Satapathy D K, Vayalamkuzhi P, Jaiswal M 2015 Appl. Phys. Lett. 106 241902
Google Scholar
[18] Ma M, Tocci G, Michaelides A, Aeppli G 2016 Nat. Mater. 15 66
Google Scholar
[19] Adachi Y, Koga K 2020 J. Chem. Phys. 153 114501
Google Scholar
[20] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443
Google Scholar
[21] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1
Google Scholar
[22] Wang F C, Wu H A, Geim A K 2015 Nature 528 16146
Google Scholar
[23] Algara-Siller G, Lehtinen O, Kaiser U 2015 Nature 528 16149
Google Scholar
[24] Zhu Y, Wang F, Bai J, Zeng X C, Wu H 2015 ACS Nano 9 12197
Google Scholar
[25] Corsetti F, Matthews P, Artacho E 2016 Sci. Rep. 6 18651
Google Scholar
[26] Zhu Y, Wang F, Wu H 2017 J. Chem. Phys. 146 134703
Google Scholar
[27] Chen J, Zen A, Brandenburg J G, Alfe D, Michaelides A 2016 Phys. Rev. B. 94 220102
Google Scholar
[28] Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381
Google Scholar
[29] Corem G, Kole P R, Zhu J, Kravchuk T, Manson J R, Alexandrowicz G 2013 J. Phys. Chem. C. 117 23657
Google Scholar
[30] Lin C, Avidor N, Corem G, Godsi O, Alexandrowicz G, Darling G R, Hodgson A 2018 Phys. Rev. Lett. 120 076101
Google Scholar
[31] Xu K, Cao P, Heath J R 2010 Science 329 1188
Google Scholar
[32] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondracek M, Jelinek P, Wang E, Jiang Y 2018 Nat. Commun. 9 122
Google Scholar
[33] Kimmel G A, Matthiesen J, Baer M, Mundy C J, Petrik N G, Smith R S, Dohnalek Z, Kay B D 2009 J. Am. Chem. Soc. 131 12838
Google Scholar
[34] Lupi L, Kastelowitz N, Molinero V 2014 Phys. Chem. Chem. Phys. 141 18c508
Google Scholar
[35] Chakraborty S, Kumar H, Dasgupta C, Maiti P K 2017 Acc. Chem. Res. 50 2139
Google Scholar
[36] Neek-Amal M, Lohrasebi A, Mousaei M, Shayeganfar F, Radha B, Peeters F M 2018 Appl. Phys. Lett. 113 083101
Google Scholar
[37] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X-Z, Francisco J S, Zeng X C, Xu L-M, Wang E-G, Jiang Y 2020 Nature 577 60
Google Scholar
[38] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301
Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301
Google Scholar
[39] Fukazawa H, Mae S, Ikeda S (Steffen K ed.) 2000 Annals of Glaciology (Vol. 31) 2000 pp247–251
[40] Stefanutti E, Bove L E, Alabarse F G, Lelong G, Bruni F, Ricci M A 2019 J. Chem. Phys. 150 224504
Google Scholar
[41] Futrelle R P, McGinty D J 1971 Chem. Phys. Lett. 12 285
Google Scholar
[42] Heislbetz S, Rauhut G 2010 J. Chem. Phys. 132 124102
Google Scholar
[43] Weymuth T, Haag M P, Kiewisch K, Luber S, Schenk S, Jacob C R, Herrmann C, Neugebauer J, Reiher M 2012 J. Comb. Chem. 33 2186
Google Scholar
[44] Mathias G, Baer M D 2011 J. Chem. Theory. Comput 7 2028
Google Scholar
[45] Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T, Nilsson A 2017 Science 358 1589
Google Scholar
[46] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C. 123 14880
Google Scholar
[47] Aragones J L, MacDowell L G, Vega C 2011 J. Phys. Chem. A. 115 5745
Google Scholar
[48] Zangi R, Mark A E 2003 Phys. Rev. Lett. 91 025502
Google Scholar
[49] Sobrino Fernández M, Peeters F M, Neek-Amal M 2016 Phys. Rev. B. 94 045436
Google Scholar
[50] Chen J, Schusteritsch G, Pickard C J, Salzmann C G, Michaelides A 2016 Phys. Rev. Lett. 116 025501
Google Scholar
[51] Ghasemi S, Alihosseini M, Peymanirad F, Jalali H, Ketabi S A, Khoeini F, Neek-Amal M 2020 Phys. Rev. B 101 184202
Google Scholar
[52] Santra B, Klimes J, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M 2013 J. Chem. Phys. 139 154702
Google Scholar
[53] Sabatini R, Gorni T, de Gironcoli S 2013 Phys. Rev. B 87 041108
Google Scholar
[54] Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402
Google Scholar
[55] Zheng L X, Chen M H, Sun Z R, Ko H Y, Santra B, Dhuvad P, Wu X F 2018 J. Chem. Phys. 148 164505
Google Scholar
[56] Peng H, Yang Z-H, Perdew J P, Sun J 2016 Phys. Rev. X. 6 041005
Google Scholar
[57] Wiktor J, Ambrosio F, Pasquarello A 2017 J. Chem. Phys. 147 2161012
Google Scholar
[58] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[59] Klimeš J, Bowler D R, Michaelides A 2009 J. Phys.: Condens. Matter. 22 022201
Google Scholar
[60] Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131
Google Scholar
[61] Vanderbilt D 1990 Phys. Rev. B 41 7892
Google Scholar
[62] Hamann D R 2013 Phys. Rev. B 88 085117
Google Scholar
[63] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S 2017 J. Phys.: Condens. Matter. 29 465901
Google Scholar
[64] Rottger K, Endriss A, Ihringer J, Doyle S, Kuhs W F 1994 Acta. Crystallogr. B 50 644
Google Scholar
[65] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572
Google Scholar
[66] Buch V, Sandler P, Sadlej J 1998 J. Phys. Chem. B 102 8641
Google Scholar
[67] Fang C, Li W-F, Koster R S, Klimeš J, van Blaaderen A, van Huis M A 2015 Phys. Chem. Chem. Phys. 17 365
Google Scholar
[68] Yoffe A D 1977 J. Franklin. I 303 105
Google Scholar
[69] Roessler D M 1965 Br. J. Appl. Phys. 16 1119
Google Scholar
[70] de Koning M, Fazzio A, da Silva A J R, Antonelli A 2016 Phys. Chem. Chem. Phys. 18 4652
Google Scholar
[71] Garbuio V, Cascella M, Kupchak I, Pulci O, Seitsonen A P 2015 J. Chem. Phys. 143 084507
Google Scholar
[72] Perakis F, Hamm P 2012 Phys. Chem. Chem. Phys. 14 6250
Google Scholar
[73] Moberg D R, Straight S C, Knight C, Paesani F 2017 J. Phys. Chem. Lett. 8 2579
Google Scholar
[74] Shi L, Skinner J L, Jansen T L C 2016 Phys. Chem. Chem. Phys. 18 3772
Google Scholar
[75] Liu H, Wang Y, Bowman J M 2012 J. Phys. Chem. Lett. 3 3671
Google Scholar
[76] Whalley E 1977 Can. J. Chem. 55 3429
Google Scholar
[77] Hernandez J, Uras N, Devlin J P 1998 J. Chem. Phys. 108 4525
Google Scholar
-
图 1 二维冰相I的结构的顶视图、斜视图和侧视图. 顶部水层的H和O原子分别用白色和红色圆球表示, 底部水层的H和O原子分别用深蓝色和浅蓝色圆球表示
Figure 1. Top, oblique and side views of the structure of two-dimensional ice I. H and O atoms in the top water layer are denoted as white and red spheres, respectively. H and O atoms in the bottom water layer are shown by dark blue and light blue spheres, respectively.
图 2 在120 K温度下, 二维冰相I在不同泛函的径向分布函数(gOO, gOH和gHH)及与冰Ih, XV相在100 K的gOO的对比. 插图显示了在0.95—1.05 Å距离范围内的gOH的曲线图
Figure 2. Radial distribution functions (gOO, gOH and gHH) of two-dimensional ice I in different functionals at 120 K and the comparison with the gOO of the ice Ih and XV phase at 100 K. The insets show elaborations of the gOH plots within the 0.95–1.05 Å distance range.
图 5 二维冰相I在不同泛函的介电函数的实部 (a), (c), (e)和虚部(b), (d), (f). 其中, x和y表示平面内分量, 而z分量垂直于x-y平面. 粉色虚线箭头表示能隙
Figure 5. The real (a), (c), (e) and imaginary (b), (d), (f) part of dielectric function of the two-dimensional ice I in different functionals. Here, x and y denote the in-plane components, while z component is perpendicular to x-y plane. The pink-dashed arrows refer to the energy gap.
图 6 (a)谐波近似下, 不同泛函PBE, vdW-DF-ob86和SCAN + rVV10的二维冰相I的IR; (b) 二维冰相I在不同泛函的振动态密度
Figure 6. (a) IR of the two-dimensional ice I with different functionals PBE, vdW-DF-ob86 and SCAN+rVV10 under harmonic approximation; (b) the vibrational density of states of the two-dimensional ice I in different functionals.
图 7 (a)二维冰相I和实验[72,76]及理论的冰Ih相[75]的分子内伸缩振动谱; (b) 二维冰相I和实验[77]及理论的其他冰相[75]的分子内弯曲振动谱
Figure 7. (a) Intramolecular stretching vibration spectra of two-dimensional ice I and experimental[72,76] and theoretical ice Ih[75]; (b) intramolecular bending vibration spectra of two-dimensional ice I and experimental[77] crystalline ice and theoretical hexagonal ice[75].
-
[1] Hetzel R, Hampel A 2005 Nature 435 81
Google Scholar
[2] 孙贤明, 韩一平 2006 55 682
Google Scholar
Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682
Google Scholar
[3] Zhu T, Li J, Jin Y, Liang Y, Ma G 2008 Int. J. Environ. Sci. Te 5 375
Google Scholar
[4] Tao W K, Chen J P, Li Z Q, Wang C, Zhang C D 2012 Rev. Geophys. 50 Rg2001
Google Scholar
[5] Zheng S L, Li C, Fu Q T, Hu W, Xiang T F, Wang Q, Du M P, Liu X C, Chen Z 2016 Mater. Des. 93 261
Google Scholar
[6] 刘胜兴, 李整林 2017 66 234301
Google Scholar
Liu S X, Li Z L 2017 Acta Phys. Sin. 66 234301
Google Scholar
[7] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程 2018 67 196401
Google Scholar
Zhang T X, Wang Z J, Wang L L, Li J J, Lin X, Wang J C 2018 Acta Phys. Sin. 67 196401
Google Scholar
[8] Lee H 2019 J. Mol. Graph. Model. 87 48
Google Scholar
[9] Bragg W H 1924 Science 60 139
Google Scholar
[10] Bjerrum N 1952 Science 115 385
Google Scholar
[11] Moore E B, Molinero V 2011 Phys. Chem. Chem. Phys. 13 20008
Google Scholar
[12] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. USA 109 1041
Google Scholar
[13] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60
Google Scholar
[14] Li T, Donadio D, Russo G, Galli G 2011 Phys. Chem. Chem. Phys. 13 19807
Google Scholar
[15] Radhakrishnan R, Trout B L 2003 J. Am. Chem. Soc. 125 7743
Google Scholar
[16] Jovanović D, Zagorac D, Schön J C, Milovanović B, Zagorac J 2020 Z. Naturforsch. B. 75 125
Google Scholar
[17] Ghosh M, Pradipkanti L, Rai V, Satapathy D K, Vayalamkuzhi P, Jaiswal M 2015 Appl. Phys. Lett. 106 241902
Google Scholar
[18] Ma M, Tocci G, Michaelides A, Aeppli G 2016 Nat. Mater. 15 66
Google Scholar
[19] Adachi Y, Koga K 2020 J. Chem. Phys. 153 114501
Google Scholar
[20] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443
Google Scholar
[21] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1
Google Scholar
[22] Wang F C, Wu H A, Geim A K 2015 Nature 528 16146
Google Scholar
[23] Algara-Siller G, Lehtinen O, Kaiser U 2015 Nature 528 16149
Google Scholar
[24] Zhu Y, Wang F, Bai J, Zeng X C, Wu H 2015 ACS Nano 9 12197
Google Scholar
[25] Corsetti F, Matthews P, Artacho E 2016 Sci. Rep. 6 18651
Google Scholar
[26] Zhu Y, Wang F, Wu H 2017 J. Chem. Phys. 146 134703
Google Scholar
[27] Chen J, Zen A, Brandenburg J G, Alfe D, Michaelides A 2016 Phys. Rev. B. 94 220102
Google Scholar
[28] Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381
Google Scholar
[29] Corem G, Kole P R, Zhu J, Kravchuk T, Manson J R, Alexandrowicz G 2013 J. Phys. Chem. C. 117 23657
Google Scholar
[30] Lin C, Avidor N, Corem G, Godsi O, Alexandrowicz G, Darling G R, Hodgson A 2018 Phys. Rev. Lett. 120 076101
Google Scholar
[31] Xu K, Cao P, Heath J R 2010 Science 329 1188
Google Scholar
[32] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondracek M, Jelinek P, Wang E, Jiang Y 2018 Nat. Commun. 9 122
Google Scholar
[33] Kimmel G A, Matthiesen J, Baer M, Mundy C J, Petrik N G, Smith R S, Dohnalek Z, Kay B D 2009 J. Am. Chem. Soc. 131 12838
Google Scholar
[34] Lupi L, Kastelowitz N, Molinero V 2014 Phys. Chem. Chem. Phys. 141 18c508
Google Scholar
[35] Chakraborty S, Kumar H, Dasgupta C, Maiti P K 2017 Acc. Chem. Res. 50 2139
Google Scholar
[36] Neek-Amal M, Lohrasebi A, Mousaei M, Shayeganfar F, Radha B, Peeters F M 2018 Appl. Phys. Lett. 113 083101
Google Scholar
[37] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X-Z, Francisco J S, Zeng X C, Xu L-M, Wang E-G, Jiang Y 2020 Nature 577 60
Google Scholar
[38] 刘子媛, 潘金波, 张余洋, 杜世萱 2021 70 027301
Google Scholar
Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301
Google Scholar
[39] Fukazawa H, Mae S, Ikeda S (Steffen K ed.) 2000 Annals of Glaciology (Vol. 31) 2000 pp247–251
[40] Stefanutti E, Bove L E, Alabarse F G, Lelong G, Bruni F, Ricci M A 2019 J. Chem. Phys. 150 224504
Google Scholar
[41] Futrelle R P, McGinty D J 1971 Chem. Phys. Lett. 12 285
Google Scholar
[42] Heislbetz S, Rauhut G 2010 J. Chem. Phys. 132 124102
Google Scholar
[43] Weymuth T, Haag M P, Kiewisch K, Luber S, Schenk S, Jacob C R, Herrmann C, Neugebauer J, Reiher M 2012 J. Comb. Chem. 33 2186
Google Scholar
[44] Mathias G, Baer M D 2011 J. Chem. Theory. Comput 7 2028
Google Scholar
[45] Kim K H, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg J A, Lee J H, Kim S, Park J, Nam K H, Katayama T, Nilsson A 2017 Science 358 1589
Google Scholar
[46] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C. 123 14880
Google Scholar
[47] Aragones J L, MacDowell L G, Vega C 2011 J. Phys. Chem. A. 115 5745
Google Scholar
[48] Zangi R, Mark A E 2003 Phys. Rev. Lett. 91 025502
Google Scholar
[49] Sobrino Fernández M, Peeters F M, Neek-Amal M 2016 Phys. Rev. B. 94 045436
Google Scholar
[50] Chen J, Schusteritsch G, Pickard C J, Salzmann C G, Michaelides A 2016 Phys. Rev. Lett. 116 025501
Google Scholar
[51] Ghasemi S, Alihosseini M, Peymanirad F, Jalali H, Ketabi S A, Khoeini F, Neek-Amal M 2020 Phys. Rev. B 101 184202
Google Scholar
[52] Santra B, Klimes J, Tkatchenko A, Alfe D, Slater B, Michaelides A, Car R, Scheffler M 2013 J. Chem. Phys. 139 154702
Google Scholar
[53] Sabatini R, Gorni T, de Gironcoli S 2013 Phys. Rev. B 87 041108
Google Scholar
[54] Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402
Google Scholar
[55] Zheng L X, Chen M H, Sun Z R, Ko H Y, Santra B, Dhuvad P, Wu X F 2018 J. Chem. Phys. 148 164505
Google Scholar
[56] Peng H, Yang Z-H, Perdew J P, Sun J 2016 Phys. Rev. X. 6 041005
Google Scholar
[57] Wiktor J, Ambrosio F, Pasquarello A 2017 J. Chem. Phys. 147 2161012
Google Scholar
[58] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[59] Klimeš J, Bowler D R, Michaelides A 2009 J. Phys.: Condens. Matter. 22 022201
Google Scholar
[60] Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131
Google Scholar
[61] Vanderbilt D 1990 Phys. Rev. B 41 7892
Google Scholar
[62] Hamann D R 2013 Phys. Rev. B 88 085117
Google Scholar
[63] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S 2017 J. Phys.: Condens. Matter. 29 465901
Google Scholar
[64] Rottger K, Endriss A, Ihringer J, Doyle S, Kuhs W F 1994 Acta. Crystallogr. B 50 644
Google Scholar
[65] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572
Google Scholar
[66] Buch V, Sandler P, Sadlej J 1998 J. Phys. Chem. B 102 8641
Google Scholar
[67] Fang C, Li W-F, Koster R S, Klimeš J, van Blaaderen A, van Huis M A 2015 Phys. Chem. Chem. Phys. 17 365
Google Scholar
[68] Yoffe A D 1977 J. Franklin. I 303 105
Google Scholar
[69] Roessler D M 1965 Br. J. Appl. Phys. 16 1119
Google Scholar
[70] de Koning M, Fazzio A, da Silva A J R, Antonelli A 2016 Phys. Chem. Chem. Phys. 18 4652
Google Scholar
[71] Garbuio V, Cascella M, Kupchak I, Pulci O, Seitsonen A P 2015 J. Chem. Phys. 143 084507
Google Scholar
[72] Perakis F, Hamm P 2012 Phys. Chem. Chem. Phys. 14 6250
Google Scholar
[73] Moberg D R, Straight S C, Knight C, Paesani F 2017 J. Phys. Chem. Lett. 8 2579
Google Scholar
[74] Shi L, Skinner J L, Jansen T L C 2016 Phys. Chem. Chem. Phys. 18 3772
Google Scholar
[75] Liu H, Wang Y, Bowman J M 2012 J. Phys. Chem. Lett. 3 3671
Google Scholar
[76] Whalley E 1977 Can. J. Chem. 55 3429
Google Scholar
[77] Hernandez J, Uras N, Devlin J P 1998 J. Chem. Phys. 108 4525
Google Scholar
Catalog
Metrics
- Abstract views: 6849
- PDF Downloads: 195
- Cited By: 0