搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性需求下的网络交通流逐日动态演化

刘诗序 陈文思 池其源 严海

引用本文:
Citation:

弹性需求下的网络交通流逐日动态演化

刘诗序, 陈文思, 池其源, 严海

Day-to-day dynamical evolution of network traffic flow with elastic demand

Liu Shi-Xu, Chen Wen-Si, Chi Qi-Yuan, Yan Hai
PDF
导出引用
  • 在现实交通系统中,网络的交通需求是可变的,随交通运行状态而改变.针对需求可变情形,以含两条路径的简单路网为例,建立了弹性需求下的网络交通流逐日动态演化模型,基于非线性动力学理论,证明了动态演化模型的不动点存在且唯一,并且推导出了弹性需求下网络交通流动态演化的稳定性条件.通过数值实验,分析了网络交通流演化特征.研究发现:在一定条件下流量演化会出现分岔和混沌现象,并且出行者的出行需求对费用越敏感,系统演化越可能稳定;出行者路径选择的随机性越小,系统演化越不可能稳定;出行者对前一天实际费用的依赖程度越小,系统演化越可能稳定.
    Network traffic flow is an aggregated result of a huge number of travelers' route choices, which is influenced by the travelers' choice behaviors. So day-to-day traffic flow is not static, but presents a complex and tortuous day-to-day dynamic evolution process. Studying day-to-day dynamic evolution of network traffic flow, we can not only know whether the traffic network equilibrium can be reached and how the process is achieved, but also can know what phenomenon will occur in the evolution of network traffic flow if the equilibrium is not reached. In a real traffic system, taking day as scale unit, the day-to-day network traffic demand is variable and changes with everyday's traffic network state. The travelers' route choices are also influenced by the previous day's behaviors and network state. Then, will the day-to-day network traffic flow evolution be stable? If it is unstable, when will bifurcation and chaos occur? In this paper we discuss the day-to-day dynamic evolution of network traffic flow with elastic demand in a simple two-route network. The dynamic evolution model of network traffic flow with elastic demand is formulated. Based on a nonlinear dynamic theory, the existence and uniqueness of the fixed point of dynamic evolution model are proved, and an equilibrium stability condition for the dynamic evolution of network traffic flow with elastic demand is derived. Then, the evolution of network traffic flow is investigated through numerical experiments by changing the three parameters associated with travelers, which are the sensitivity of travelers' travel demand to travel cost, the randomness of travelers' route choices, and travelers' reliance on the previous day's actual cost. Our findings are as follows. Firstly, there are three kinds of final states in the evolution of network traffic flow: stability and convergence to equilibrium, periodic motion and chaos. The final state of the network traffic flow evolution is related to the above three parameters. It is found that under certain conditions the bifurcation diagram of the network traffic flow evolution reveals a complicated phenomenon of period doubling bifurcation to chaos, and then period-halving bifurcation. Meanwhile, the chaotic region is interspersed with odd periodic windows. Moreover, the more sensitive to cost the travelers' travel demand the more likely the system evolution is to be stable. The smaller the randomness of travelers' route choices, the less likely the system evolution is to be stable. The lower the degree of travelers' reliance on the previous day's actual cost, the more likely the system evolution is to be stable.
      通信作者: 刘诗序, liushixu@fzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51308126,51378036,51308018)资助的课题.
      Corresponding author: Liu Shi-Xu, liushixu@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51308126, 51378036, 51308018).
    [1]

    Liu S X, Guan H Z, Yan H 2012 Acta Phys. Sin. 61 090506 (in Chinese) [刘诗序, 关宏志, 严海 2012 61 090506]

    [2]

    Sheffi Y 1985 Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (Englewood Cliffs: Prentice-Hall, Inc.) pp59-61, 309

    [3]

    Kim H, Oh J S, Jayakrishnan R 2009 KSCE J. Civil Engineer. 13 117

    [4]

    Nakayama S, Kitamura R, Fujii S 1999 Transp. Res. Rec. 1676 30

    [5]

    Klgl F, Bazzan A L C 2004 J. Artificial Societies and Social Simulation 7 1

    [6]

    Wei F F, Ma S F, Jia N 2014 Math. Probl. Eng. 204 1

    [7]

    Kusakabe T, Nakano Y 2015 Transp. Res. C 59 278

    [8]

    Liu T L, Huang H J 2007 Acta Phys. Sin. 56 6321 (in Chinese) [刘天亮, 黄海军 2007 56 6321]

    [9]

    Liu S X, Guan H Z 2013 China Civil Eng. J. 46 136 (in Chinese) [刘诗序, 关宏志 2013 土木工程学报 46 136]

    [10]

    Iida Y, Akiyama T, Uchida T 1992 Transp. Res. B 26 17

    [11]

    Selten R, Chmura T, Pitz T, Kubec S, Schreckenberg M 2007 Game Econ. Behav. 58 394

    [12]

    Rapoport A, Gisches E J, Daniel T 2014 Transp. Res. B 68 154

    [13]

    Smith M J 1984 Transp. Sci. 18 245

    [14]

    Smith M J, Watling D P 2016 Transp. Res. B 85 132

    [15]

    Nagurney A, Zhang D 1997 Transp. Sci. 31 147

    [16]

    Watling D 1999 Transp. Res. B 33 281

    [17]

    Cho H J, Hwang M C 2005 Math. Comput. Model. 41 501

    [18]

    Kumar A, Peeta S 2015 Transp. Res. B 80 235

    [19]

    Tan Z, Yang H, Guo R Y 2015 Transp. Res. C 61 87

    [20]

    Di X, Liu H X, Ban X X, Yu J W 2015 Netw. Spat. Econ. 15 537

    [21]

    He X Z, Peeta S 2016 Transp. Res. B 84 237

    [22]

    Iryo T 2016 Transp. Res. B 92 88

    [23]

    Xiao F, Yang H, Ye H B 2016 Transp. Res. B 86 86

    [24]

    Guo R Y, Huang H J 2008 J. Manag. Sci. in China 11 12 (in Chinese) [郭仁拥, 黄海军 2008 管理科学学报 11 12]

    [25]

    Guo R Y, Yang H, Huang H J, Tan Z J 2015 Transp. Res. B 71 248

    [26]

    Zhang B, Juan Z C, Ni A N 2014 J. Ind. Eng. Eng. Manag. 28 164

    [27]

    Horowitz J L 1984 Transp. Res. B 18 13

    [28]

    Cascetta E, Cantarella G E 1991 Transp. Res. A 25 277

    [29]

    Cantarella G E, Cascetta E 1995 Transp. Sci. 29 305

    [30]

    Cantarella G E 2013 Transp. Res. C 29 117

    [31]

    Watling D, Hazelton M L 2003 Netw. Spat. Econ. 3 349

    [32]

    Bie J, Lo H K 2010 Transp. Res. B 44 90

    [33]

    He X, Liu H X 2012 Transp. Res. B 46 50

    [34]

    Han L, Du L 2012 Transp. Res. B 46 72

    [35]

    Zhao X, Orosz G 2014 Physica D 275 54

    [36]

    Di X, Liu H X 2016 Transp. Res. B 85 142

    [37]

    Li T, Guan H Z, Liang K K 2016 Acta Phys. Sin. 65 150502 (in Chinese) [李涛, 关宏志, 梁科科 2016 65 150502]

    [38]

    Guo R Y, Yang H, Huang H J 2013 Transp. Res. C 34 121

    [39]

    Guo R Y, Huang H J 2016 Transp. Res. C 71 122

    [40]

    Yang W J, Guo R Y, Li Q 2015 Syst. Eng. Theory Pract. 35 3192 (in Chinese) [杨文娟, 郭仁拥, 李琦 2015 系统工程理论与实践 35 3192]

    [41]

    Xu H L, Yu X L, Zhou J 2015 J. Manag. Sci. China 18 39 (in Chinese) [徐红利, 于新莲, 周晶 2015 管理科学学报 18 39]

    [42]

    Cantarella G E, Watling D P 2016 Euro. J. Transp. Logist. 5 69

    [43]

    Dafermos S 1982 Networks 12 57

    [44]

    Cantarella G E 1997 Transp. Sci. 31 107

    [45]

    Yu Q, Fang D B, Du W 2014 Eur. J. Oper. Res. 239 112

    [46]

    Zhou J 2001 J. Syst. Engineer. 16 88 (in Chinese) [周晶 2001 系统工程学报 16 88]

    [47]

    Nagurney A 1999 Network Economics: A Variational Inequality Approach (Boston: Kluwer Academic Publishers) pp17-19

    [48]

    Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamic (Beijing: Higher Education Press) pp24-29, 60-61 (in Chinese) [刘宗华 2006 混沌动力学基础及其应用 (北京: 高等教育出版社) 第2429, 6061页]

    [49]

    Stone L 1993 Nature 365 617

    [50]

    Yu W B, Wei X P 2006 Acta Phys. Sin. 55 3969 (in Chinese) [于万波, 魏小鹏 2006 55 3969]

    [51]

    Peng M S 2005 Chaos Solitons Fract. 25 1123

  • [1]

    Liu S X, Guan H Z, Yan H 2012 Acta Phys. Sin. 61 090506 (in Chinese) [刘诗序, 关宏志, 严海 2012 61 090506]

    [2]

    Sheffi Y 1985 Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (Englewood Cliffs: Prentice-Hall, Inc.) pp59-61, 309

    [3]

    Kim H, Oh J S, Jayakrishnan R 2009 KSCE J. Civil Engineer. 13 117

    [4]

    Nakayama S, Kitamura R, Fujii S 1999 Transp. Res. Rec. 1676 30

    [5]

    Klgl F, Bazzan A L C 2004 J. Artificial Societies and Social Simulation 7 1

    [6]

    Wei F F, Ma S F, Jia N 2014 Math. Probl. Eng. 204 1

    [7]

    Kusakabe T, Nakano Y 2015 Transp. Res. C 59 278

    [8]

    Liu T L, Huang H J 2007 Acta Phys. Sin. 56 6321 (in Chinese) [刘天亮, 黄海军 2007 56 6321]

    [9]

    Liu S X, Guan H Z 2013 China Civil Eng. J. 46 136 (in Chinese) [刘诗序, 关宏志 2013 土木工程学报 46 136]

    [10]

    Iida Y, Akiyama T, Uchida T 1992 Transp. Res. B 26 17

    [11]

    Selten R, Chmura T, Pitz T, Kubec S, Schreckenberg M 2007 Game Econ. Behav. 58 394

    [12]

    Rapoport A, Gisches E J, Daniel T 2014 Transp. Res. B 68 154

    [13]

    Smith M J 1984 Transp. Sci. 18 245

    [14]

    Smith M J, Watling D P 2016 Transp. Res. B 85 132

    [15]

    Nagurney A, Zhang D 1997 Transp. Sci. 31 147

    [16]

    Watling D 1999 Transp. Res. B 33 281

    [17]

    Cho H J, Hwang M C 2005 Math. Comput. Model. 41 501

    [18]

    Kumar A, Peeta S 2015 Transp. Res. B 80 235

    [19]

    Tan Z, Yang H, Guo R Y 2015 Transp. Res. C 61 87

    [20]

    Di X, Liu H X, Ban X X, Yu J W 2015 Netw. Spat. Econ. 15 537

    [21]

    He X Z, Peeta S 2016 Transp. Res. B 84 237

    [22]

    Iryo T 2016 Transp. Res. B 92 88

    [23]

    Xiao F, Yang H, Ye H B 2016 Transp. Res. B 86 86

    [24]

    Guo R Y, Huang H J 2008 J. Manag. Sci. in China 11 12 (in Chinese) [郭仁拥, 黄海军 2008 管理科学学报 11 12]

    [25]

    Guo R Y, Yang H, Huang H J, Tan Z J 2015 Transp. Res. B 71 248

    [26]

    Zhang B, Juan Z C, Ni A N 2014 J. Ind. Eng. Eng. Manag. 28 164

    [27]

    Horowitz J L 1984 Transp. Res. B 18 13

    [28]

    Cascetta E, Cantarella G E 1991 Transp. Res. A 25 277

    [29]

    Cantarella G E, Cascetta E 1995 Transp. Sci. 29 305

    [30]

    Cantarella G E 2013 Transp. Res. C 29 117

    [31]

    Watling D, Hazelton M L 2003 Netw. Spat. Econ. 3 349

    [32]

    Bie J, Lo H K 2010 Transp. Res. B 44 90

    [33]

    He X, Liu H X 2012 Transp. Res. B 46 50

    [34]

    Han L, Du L 2012 Transp. Res. B 46 72

    [35]

    Zhao X, Orosz G 2014 Physica D 275 54

    [36]

    Di X, Liu H X 2016 Transp. Res. B 85 142

    [37]

    Li T, Guan H Z, Liang K K 2016 Acta Phys. Sin. 65 150502 (in Chinese) [李涛, 关宏志, 梁科科 2016 65 150502]

    [38]

    Guo R Y, Yang H, Huang H J 2013 Transp. Res. C 34 121

    [39]

    Guo R Y, Huang H J 2016 Transp. Res. C 71 122

    [40]

    Yang W J, Guo R Y, Li Q 2015 Syst. Eng. Theory Pract. 35 3192 (in Chinese) [杨文娟, 郭仁拥, 李琦 2015 系统工程理论与实践 35 3192]

    [41]

    Xu H L, Yu X L, Zhou J 2015 J. Manag. Sci. China 18 39 (in Chinese) [徐红利, 于新莲, 周晶 2015 管理科学学报 18 39]

    [42]

    Cantarella G E, Watling D P 2016 Euro. J. Transp. Logist. 5 69

    [43]

    Dafermos S 1982 Networks 12 57

    [44]

    Cantarella G E 1997 Transp. Sci. 31 107

    [45]

    Yu Q, Fang D B, Du W 2014 Eur. J. Oper. Res. 239 112

    [46]

    Zhou J 2001 J. Syst. Engineer. 16 88 (in Chinese) [周晶 2001 系统工程学报 16 88]

    [47]

    Nagurney A 1999 Network Economics: A Variational Inequality Approach (Boston: Kluwer Academic Publishers) pp17-19

    [48]

    Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamic (Beijing: Higher Education Press) pp24-29, 60-61 (in Chinese) [刘宗华 2006 混沌动力学基础及其应用 (北京: 高等教育出版社) 第2429, 6061页]

    [49]

    Stone L 1993 Nature 365 617

    [50]

    Yu W B, Wei X P 2006 Acta Phys. Sin. 55 3969 (in Chinese) [于万波, 魏小鹏 2006 55 3969]

    [51]

    Peng M S 2005 Chaos Solitons Fract. 25 1123

  • [1] 颜森林. 激光局域网络的混沌控制及并行队列同步.  , 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [2] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究.  , 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [3] 李涛, 关宏志, 梁科科. 有限理性视野下网络交通流逐日演化规律研究.  , 2016, 65(15): 150502. doi: 10.7498/aps.65.150502
    [4] 修春波, 刘畅, 郭富慧, 成怡, 罗菁. 迟滞混沌神经元/网络的控制策略及应用研究.  , 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [5] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路.  , 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [6] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学.  , 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [7] 张玉梅, 吴晓军, 白树林. 交通流量序列混沌特性分析及DFPSOVF预测模型.  , 2013, 62(19): 190509. doi: 10.7498/aps.62.190509
    [8] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题.  , 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [9] 柴争义, 刘芳, 朱思峰. 混沌量子克隆优化求解认知无线网络决策引擎.  , 2012, 61(2): 028801. doi: 10.7498/aps.61.028801
    [10] 张檬, 吕翎, 吕娜, 范鑫. 结构与参量不确定的网络与网络之间的混沌同步.  , 2012, 61(22): 220508. doi: 10.7498/aps.61.220508
    [11] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制.  , 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [12] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法.  , 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [13] 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究.  , 2011, 60(4): 048901. doi: 10.7498/aps.60.048901
    [14] 张晓芳, 陈章耀, 毕勤胜. 非线性电路通向混沌的演化过程.  , 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [15] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程.  , 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [17] 颜森林. 混沌信号在光纤传输过程中的非线性演化.  , 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [18] 郭现峰, 张家树. 基于混沌动态S-Box的Hash函数.  , 2006, 55(9): 4442-4449. doi: 10.7498/aps.55.4442
    [19] 谭 文, 王耀南. 不确定混沌系统的直接自适应模糊神经网络控制.  , 2004, 53(12): 4087-4091. doi: 10.7498/aps.53.4087
    [20] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
计量
  • 文章访问数:  6612
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2016-12-28
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map