Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation

Zhang Hu Xing Cheng-Fen Long Ke-Wen Xiao Ya-Ning Tao Kun Wang Li-Chen Long Yi

Citation:

Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation

Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The study on the field dependence of magnetocaloric effect (MCE) is considered to be of fundamental and practical importance, since it not only guides us in understanding and optimizing the MCE, but also helps us estimate the MCE for higher magnetic field which is not available in some laboratories. The magnetic field (0H) dependence of magnetic entropy change (△SM) has been studied extensively in many materials with second-order magnetic transition. However, the field dependence of MCE for first-order magnetic transition (FOMT) materials has not been sufficiently studied due to their complexity and diversity. In the present work, polycrystalline Mn0.6Fe0.4NiSi0.5Ge0.5, Ni50Mn34Co2Sn14, and LaFe11.7Si1.3 compounds with FOMT are prepared, and the magnetic and magnetocaloric properties are investigated systematically. In order to avoid a spurious △SM, the M-0H curves are measured in a loop process. The M-0H curves are corrected by taking into account the demagnetization effect, i.e. Hint=Hext-NdM. It is found that the -△SM follows a linear relationship -△SM=-△S0 +0H with the variation of magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 compound when 0H 1 T. In addition, it is also noted that the △SM is approximately proportional to the square of 0H at low field. The origin of this linear relationship between △SM and 0H at high field and the deviation at low field are discussed by numerically analyzing the Maxwell relation. In addition to the △SM peak value, it is found that other △SM values at different temperatures also follow the linear relation at high field by performing the same numerical analysis. Moreover, it is found that the fitted △SM curve matches the experimental data very well. This result indicates that the linear relationship between △SM and 0H could be utilized to predict the △SM for higher magnetic field change when the field is lower than the saturation field. The applicability of this linear relationship is also verified in other systems with first-order magnetostructural transformation, such as Ni50Mn34Co2Sn14. However, it fails to describe the field dependence of △SM in LaFe11.7Si1.3, which exhibits a strong field dependence of transition temperature. Consequently, our study reveals that a linear dependence of △SM on 0H could occur in magnetostructural transition materials, which show the field independence of transition temperature.
      Corresponding author: Zhang Hu, zhanghu@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022, 51701130), the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the Natural Science Foundation of Beijing, China (Grant No. 2162022), and the Scientific and Technological Innovation Team Program of Foshan, China (Grant No. 2015IT100044).
    [1]

    Smith A, Bahl C R H, Bjrk R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [2]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [3]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [4]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)[郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 65 217502]

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

    [6]

    Franco V, Conde A 2010 Int. J. Refrig. 33 465

    [7]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)[张登魁,赵金良,张红国,岳明 2014 63 197501]

    [8]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [9]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [10]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [11]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873

    [12]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909

    [14]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [15]

    Franco V, Blzquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Res. 42 305

    [16]

    Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501

    [17]

    Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z, Long Y 2016 Chin. Phys. B 25 127104

    [18]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [19]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [20]

    Patra M, Majumdar S, Giri S, Iles G N, Chatterji T 2010 J. Appl. Phys. 107 076101

    [21]

    Franco V, Blzquez J S, Conde A 2006 J. Appl. Phys. 100 064307

    [22]

    Franco V, Blzquez J S, Milln M, Borrego J M, Conde C F, Conde A 2007 J. Appl. Phys. 101 09C503

    [23]

    Bonilla C M, Herrero-Albillos J, Bartolom F, Garca L M, Parra-Borderas M, Franco V 2010 Phys. Rev. B 81 224424

    [24]

    Casanova F, Batlle X, Labarta A, Marcos J, Maosa L, Planes A 2002 Phys. Rev. B 66 212402

    [25]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H, Zhang X X 2015 Adv. Electron. Mater. 1 1500076

    [26]

    Tao K, Zhang H, Long K W, Wang Y X, Wu M L, Xiao Y N, Xing C F, Wang L C, Long Y 2017 Intermetallics 91 45

    [27]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [28]

    Giguere A, Foldeaki M, Gopal B R, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [29]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Brck E 2009 J. Magn. Magn. Mater. 321 3559

    [30]

    Li Y W, Zhang H, Tao K, Wang Y X, Wu M L, Long Y 2017 Mater. Des. 114 410

    [31]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565

    [32]

    Fldeki M, Chahine R, Bose T K, Barclay J A 2000 Phys. Rev. Lett. 85 4192

    [33]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [34]

    Zou J D, Shen B G, Gao B, Shen J, Sun J R 2009 Adv. Mater. 21 693

    [35]

    Amaral J S, Amaral V S 2009 Appl. Phys. Lett. 94 042506

    [36]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater. 322 1552

  • [1]

    Smith A, Bahl C R H, Bjrk R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [2]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [3]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [4]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)[郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 65 217502]

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

    [6]

    Franco V, Conde A 2010 Int. J. Refrig. 33 465

    [7]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)[张登魁,赵金良,张红国,岳明 2014 63 197501]

    [8]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [9]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [10]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [11]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873

    [12]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909

    [14]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [15]

    Franco V, Blzquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Res. 42 305

    [16]

    Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501

    [17]

    Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z, Long Y 2016 Chin. Phys. B 25 127104

    [18]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [19]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [20]

    Patra M, Majumdar S, Giri S, Iles G N, Chatterji T 2010 J. Appl. Phys. 107 076101

    [21]

    Franco V, Blzquez J S, Conde A 2006 J. Appl. Phys. 100 064307

    [22]

    Franco V, Blzquez J S, Milln M, Borrego J M, Conde C F, Conde A 2007 J. Appl. Phys. 101 09C503

    [23]

    Bonilla C M, Herrero-Albillos J, Bartolom F, Garca L M, Parra-Borderas M, Franco V 2010 Phys. Rev. B 81 224424

    [24]

    Casanova F, Batlle X, Labarta A, Marcos J, Maosa L, Planes A 2002 Phys. Rev. B 66 212402

    [25]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H, Zhang X X 2015 Adv. Electron. Mater. 1 1500076

    [26]

    Tao K, Zhang H, Long K W, Wang Y X, Wu M L, Xiao Y N, Xing C F, Wang L C, Long Y 2017 Intermetallics 91 45

    [27]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [28]

    Giguere A, Foldeaki M, Gopal B R, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [29]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Brck E 2009 J. Magn. Magn. Mater. 321 3559

    [30]

    Li Y W, Zhang H, Tao K, Wang Y X, Wu M L, Long Y 2017 Mater. Des. 114 410

    [31]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565

    [32]

    Fldeki M, Chahine R, Bose T K, Barclay J A 2000 Phys. Rev. Lett. 85 4192

    [33]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [34]

    Zou J D, Shen B G, Gao B, Shen J, Sun J R 2009 Adv. Mater. 21 693

    [35]

    Amaral J S, Amaral V S 2009 Appl. Phys. Lett. 94 042506

    [36]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater. 322 1552

  • [1] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [5] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [8] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [9] Sun Xiao-Dong, Xu Bao, Wu Hong-Ye, Cao Feng-Ze, Zhao Jian-Jun, Lu Yi. Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7. Acta Physica Sinica, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [10] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [11] Dong Xue, Zhang Guo-Ying, Xia Wang-Suo, Huang Yi-Jia, Hu Feng. Study on the magnetic and magnetocaloric effects of Dy3Al5O12. Acta Physica Sinica, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [12] Zhang Deng-Kui, Zhao Jin-Liang, Zhang Hong-Guo, Yue Ming. Study on the hydrogenation properties and stability of LaFe11.5Si1.5 compound. Acta Physica Sinica, 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [13] Chen Xiang, Chen Yun-Gui, Tang Yong-Bo, Xiao Ding-Quan, Li Dao-Hua. Basic problem in the first-order phase transition magnetic refrigeration material. Acta Physica Sinica, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [14] Huang Yi-Jia, Zhang Guo-Ying, Hu Feng, Xia Wang-Suo, Liu Hai-Shun. Investigation on the magnetic and magnetocaloric properties of PrNi2. Acta Physica Sinica, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [15] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] Cai Pei-Yang, Feng Shang-Shen, Chen Wei-Ping, Xue Shuang-Xi, Li Zhi-Gang, Zhou Ying, Wang Hai-Bo, Wang Gu-Ping. Magnetic entropy change and magnetic-field-induced strain in polycrystalline Ni47Mn32Ga21 alloy. Acta Physica Sinica, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [19] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  6629
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2018
  • Accepted Date:  09 August 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map