Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation

Xing Wei Sun Jin-Feng Shi De-Heng Zhu Zun-Lüe

Citation:

Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation

Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we calculate the potential energy curves of 5 -S and 10 , which arise from the first two dissociation limits of the AlH+ cation. The calculations are done using the complete active space self-consistent field method, which combines with the valence internally contracted multireference configuration interaction plus the Davidson modification (icMRCI+Q) approach with the aug-cc-pV6Z basis set. To improve the reliability and accuracy of the potential energy curves, the core-valence correlation and scalar relativistic correction, as well as the extrapolation of potential energy to the complete basis set limit are taken into account. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Employing the potential energy curves obtained in this study, we evaluate the spectroscopic parameters and vibrational levels for the bound and quasi-bound 4 -S and 8 states. The computed spectroscopic constants of X2+ and A2 states are all in agreement with the available experimental data. Moreover, the present theoretical energy separations between each higher channel (Al+(3P0) + H(2S1/2), Al+(3P1) + H(2S1/2), and Al+(3P2) + H(2S1/2) and the lowest one (Al+(1S0) + H(2S1/2)) are in excellent agreement with the experimental values. The transition dipole moments are calculated using the valence internally contracted multireference configuration interaction approach with the aug-cc-pV6Z basis set for the 2(1/2) X21/2+ and A23/2X21/2+. Based on the obtained potential energy curves and transition dipole moments, highly diagonally distributed Franck-Condon factors (f00 and f11) and large vibrational branching ratios are determined for the 2(1/2)1st well (v'=0, 1) X21/2+ (v) and A23/2(v'=0,1)X21/2+(v) transitions; short spontaneous radiative lifetime and narrow radiative width for the 2(1/2)1st well (v'=0, 1) and A23/2 (v'=0, 1) are also predicted in this study, which are suitable for the rapid laser cooling of the AlH+ cation. The three required laser cooling wavelengths are all in the ultraviolet region, that is, 1) for the X21/2+(v) 2(1/2)1st well (v') transition:the main repumping laser 00=358.74 nm, two repumping lasers 10=379.27 nm and 21=374.86 nm; 2) for the X21/2+ (v) A23/2 (v') transition:the main repumping laser 00=357.43 nm, two repumping lasers 10=377.80 nm and 21=373.26 nm. In addition, the recoil temperature for the X21/2+ (v=0) 2(1/2)1st well (v'=0) and X21/2+ (v=0) A23/2 (v'=0) transitions are obtained. The results imply the feasibility of laser cooling of AlH+ cation. In addition, the spin-orbit coupling effect on the spectroscopic parameter, vibrational level, and laser cooling of AlH+ cation are evaluated.
      Corresponding author: Sun Jin-Feng, jfsun@haust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097).
    [1]

    Halfen D T, Ziurys L M 2004 Astrophys. J. 607 L63

    [2]

    Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023

    [3]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783

    [4]

    Holst W 1933 Nature 132 1003

    [5]

    Holst W 1934 Z. Phys. 89 40

    [6]

    Almy G M, Watson M C 1934 Phys. Rev. 45 871

    [7]

    Rafi M, Baig M A, Qureshi M H 1980 IL. Nuo. Cim. 56 289

    [8]

    Balfour W J, Lindgren B 1984 J. Phys. B:At. Mol. Opt. Phys. 17 L861

    [9]

    Mller B, Ottinger C 1986 J. Chem. Phys. 85 232

    [10]

    Mller B, Ottinger C 1988 Z. Naturforsch. A:Phys. Sci. 43 1007

    [11]

    Szajna W, Zachwieja M 2011 J. Mol. Spectrosc. 269 56

    [12]

    Seck C M, Hohenstein E G, Lien C Y, Stollenwerk P R, Odom B C 2014 J. Mol. Spectrosc. 300 108

    [13]

    Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13

    [14]

    Guest M F, Hirst D M 1981 Chem. Phys. Lett. 84 167

    [15]

    Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559

    [16]

    Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040

    [17]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3

    [18]

    Wu D L, Tan B, Zeng X F, Wan H J, Xie A D, Yan B, Ding D J 2016 Chin. Phys. Lett. 33 063102

    [19]

    Luo H F, Wan M J, Huang D H 2018 Acta Phys. Sin. 67 043101 (in Chinese) [罗华锋, 万明杰, 黄多辉 2018 67 043101]

    [20]

    Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese) [李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]

    [21]

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101 (in Chinese) [张云光, 张华, 窦戈, 徐建刚 2017 66 233101]

    [22]

    Yang R, Tang B, Gao T 2016 Chin. Phys. B 25 043101

    [23]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2018 Spectrochim. Acta Part A:Mol. Biomol.Spectrosc. 193 78

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [25]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61

    [26]

    Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 100 2975

    [27]

    van Mourikt T, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 96 529

    [28]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [29]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548

    [30]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [31]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [32]

    Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 063301 (in Chinese) [邢伟, 孙金锋, 施德恒, 朱遵略 2018 67 063301]

    [33]

    le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

  • [1]

    Halfen D T, Ziurys L M 2004 Astrophys. J. 607 L63

    [2]

    Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023

    [3]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783

    [4]

    Holst W 1933 Nature 132 1003

    [5]

    Holst W 1934 Z. Phys. 89 40

    [6]

    Almy G M, Watson M C 1934 Phys. Rev. 45 871

    [7]

    Rafi M, Baig M A, Qureshi M H 1980 IL. Nuo. Cim. 56 289

    [8]

    Balfour W J, Lindgren B 1984 J. Phys. B:At. Mol. Opt. Phys. 17 L861

    [9]

    Mller B, Ottinger C 1986 J. Chem. Phys. 85 232

    [10]

    Mller B, Ottinger C 1988 Z. Naturforsch. A:Phys. Sci. 43 1007

    [11]

    Szajna W, Zachwieja M 2011 J. Mol. Spectrosc. 269 56

    [12]

    Seck C M, Hohenstein E G, Lien C Y, Stollenwerk P R, Odom B C 2014 J. Mol. Spectrosc. 300 108

    [13]

    Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13

    [14]

    Guest M F, Hirst D M 1981 Chem. Phys. Lett. 84 167

    [15]

    Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559

    [16]

    Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040

    [17]

    Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3

    [18]

    Wu D L, Tan B, Zeng X F, Wan H J, Xie A D, Yan B, Ding D J 2016 Chin. Phys. Lett. 33 063102

    [19]

    Luo H F, Wan M J, Huang D H 2018 Acta Phys. Sin. 67 043101 (in Chinese) [罗华锋, 万明杰, 黄多辉 2018 67 043101]

    [20]

    Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese) [李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]

    [21]

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101 (in Chinese) [张云光, 张华, 窦戈, 徐建刚 2017 66 233101]

    [22]

    Yang R, Tang B, Gao T 2016 Chin. Phys. B 25 043101

    [23]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2018 Spectrochim. Acta Part A:Mol. Biomol.Spectrosc. 193 78

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [25]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61

    [26]

    Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 100 2975

    [27]

    van Mourikt T, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 96 529

    [28]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [29]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548

    [30]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [31]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [32]

    Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 063301 (in Chinese) [邢伟, 孙金锋, 施德恒, 朱遵略 2018 67 063301]

    [33]

    le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

  • [1] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [3] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [4] Chen Xing, Xue Xiao-Bo, Zhang Sheng-Kang, Ma Yu-Quan, Fei Peng, Jiang Yuan, Ge Jun. Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction. Acta Physica Sinica, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [6] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [7] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [8] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [9] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [10] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [11] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [14] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [15] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [16] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [17] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [19] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [20] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
Metrics
  • Abstract views:  5961
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2018
  • Accepted Date:  10 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map