-
采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z计算了CF+离子第一离解极限C+(2Pu)+F(2Pu) 对应的12个-S态(X1+, a3, 13+, 13, 11, 11-, 13-, 21+, 11, 23, 21 和 23+)所产生的23个 态的势能曲线. 计算中考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限. 基于得到的势能曲线, 获得了束缚和准束缚的9个-S态和16个 态的光谱常数, 并且X1+, a3势阱一-S态的光谱常数与已有的实验结果非常符合. 此外, 计算了CF自由基X2 态到CF+离子束缚和准束缚的9 个-S态的垂直电离势和绝热电离势, 并且CF+(X1+) CF(X2 )和CF+(a3势阱一) CF(X2 )的垂直电离势和绝热电离势与相应的实验结果也非常符合. 由a3, 11 态和其他激发-S态势能曲线的交叉现象, 借助于计算的旋轨耦合矩阵元, 分析了a3势阱一, 11势阱一 和21+ 态的预解离机理. 计算的23个 态离解极限处的相对能量与实验结果十分吻合. 最后计算了(2) 0+势阱一('=05), (1) 1势阱一('=05) 和(2) 1势阱一('=0) 到X0+ 态跃迁的Franck-Condon因子和辐射寿命.
-
关键词:
- 电离势 /
- 光谱常数 /
- 预解离 /
- Franck-Condon因子和辐射寿命
The potential energy curves of twenty-three states generated from the twelve -S states (X1+, a3, 13+, 13, 11, 11-, 13-, 21+, 11, 23, 21 and 23+) correlating with the first dissociation channel C+(2Pu)+ F(2Pu) of the CF+ cation are obtained by using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) on the basis of the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets for the first time. The spin-orbit coupling, core-valence correlation and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound nine -S and sixteen states of the CF+ cation are obtained. And the spectroscopic parameters of X1+and a31st well-S states which are in very good agreement with experimental results are achieved. Furthermore, the vertical and adiabatic ionization potentials of ionization from the X2 state of CF radical to the bound and quasibound nine -S states of the CF+ cation are calculated, and the vertical and adiabatic ionization potentials of the CF+(X1+) CF(X2 ) and CF+(a31st well) CF(X2 ) ionizations are also in good agreement with the corresponding experimental values. Various curve crossings of -S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a31st well, 111st well and 21+ states are analyzed for the first time. The spin-orbit-induced predissociations for the a31st well, 111st well and 21+-S states could happen, and the predissociations of the a31st well, 111st well and 21 +-S states start around the vibrational levels ' = 15, ' = 1 and ' = 1, respectively. Relative energies of the twenty-three states in the dissociation limits are given, and our calculations match the experimental results very well. Finally, the Franck-Condon factors and radiative lifetimes of transitions from (2) 0+1st well (;'=05), (1) 11st well ('=05) and (2) 11st well ('=0) to X0+ states are predicted for the future laboratory research.-
Keywords:
- ionization potentials /
- spectroscopic parameters /
- predissociation /
- Franck-Condon factors and radiative lifetimes
[1] Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37
[2] Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1
[3] Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142
[4] Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531
[5] Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865
[6] Hildenbrand D L 1975 Chem. Phys. Lett. 32 523
[7] Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287
[8] Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382
[9] Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437
[10] Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165
[11] Reid C J 1996 Chem. Phys. 210 501
[12] Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49
[13] O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666
[14] Hall J A, Richards W G 1972 Mol. Phys. 23 331
[15] White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318
[16] Botschwina P 1986 J. Mol. Spectrosc. 120 23
[17] Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409
[18] Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889
[19] Ricca A 1999 J. Phys. Chem. A 103 1876
[20] Petsalakis I D 1999 J. Chem. Phys. 110 10730
[21] Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181
[22] Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17
[23] Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798
[24] Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12
[25] Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300
[26] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[27] Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101
[28] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 64 153101]
[29] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[30] Richartz A, Buenker R J 1978 Chem. Phys. 28 305
[31] Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339
[32] Dunning T H 1989 J. Chem. Phys. 90 1007
[33] Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572
[34] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[35] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[36] Truhlar D G 1998 Chem. Phys. Lett. 294 45
[37] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)
[38] Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60
[39] Liu K, Bian W S 2008 J. Comput. Chem. 29 256
-
[1] Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37
[2] Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1
[3] Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142
[4] Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531
[5] Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865
[6] Hildenbrand D L 1975 Chem. Phys. Lett. 32 523
[7] Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287
[8] Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382
[9] Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437
[10] Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165
[11] Reid C J 1996 Chem. Phys. 210 501
[12] Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49
[13] O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666
[14] Hall J A, Richards W G 1972 Mol. Phys. 23 331
[15] White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318
[16] Botschwina P 1986 J. Mol. Spectrosc. 120 23
[17] Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409
[18] Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889
[19] Ricca A 1999 J. Phys. Chem. A 103 1876
[20] Petsalakis I D 1999 J. Chem. Phys. 110 10730
[21] Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181
[22] Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17
[23] Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798
[24] Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12
[25] Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300
[26] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[27] Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101
[28] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 64 153101]
[29] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[30] Richartz A, Buenker R J 1978 Chem. Phys. 28 305
[31] Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339
[32] Dunning T H 1989 J. Chem. Phys. 90 1007
[33] Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572
[34] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[35] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[36] Truhlar D G 1998 Chem. Phys. Lett. 294 45
[37] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)
[38] Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60
[39] Liu K, Bian W S 2008 J. Comput. Chem. 29 256
计量
- 文章访问数: 8520
- PDF下载量: 172
- 被引次数: 0