-
Novel unconventional physical phenomena, such as metal-insulator transition, high temperature superconductivity, colossal magneto-resistance and quantum criticality, are usually found in transition metal oxides (TMOs) with layered perovskite structures. Great success has been achieved in 3d TMOs, in which the localized 3d states yield strongly correlated narrow bands with a large on-site Coulomb repulsion U and a small band width W. Anomalous insulating behaviors are reported in the 5d TMOs, such as Sr2IrO4 system, which is surprising since the 5d TMOs are usually considered as weakly correlated wide band systems with largely reduced on-site Coulomb repulsion U due to delocalized 5d states. The crystal structure of Sr2IrO4 consists of two-dimensional (2D) IrO2 layers, similar to the parent compound La2CuO4 of the cuprates. Theoretically, a variational Monte Carlo study of Sr2IrO4 suggests that d-wave like superconductivity may appear but only within a narrow region of electron doping. In contrast, an s±*-wave phase is established for hole doping deduced from functional renormalization group, and triggered by spin fluctuations within and across the two conduction bands. Moreover, triplet p-wave pairing state with relatively high transition temperature emerges on the hole-doped side when the Hund's coupling is comparable to spin-orbit coupling. Several experiments are tried to search for the predicted unconventional superconductivity due to both electron-and hole-doping. However, to the best of our knowledge, it has not been found yet in the carrier-doped Sr2IrO4 system. Hence, more detailed studies are needed to explore the potential superconductivity.#br#A series of La doped Sr2-xLaxIrO4 samples is synthesized based on solid state reaction method. The evolution of the crystal structure is studied by the X-ray diffraction, scanning electron microscopy, together with the Raman spectrum. It is found that the crystal constant of the c-axis decreases with increasing doping level as well as the apical Ir—O1 bond length, indicating the lattice construction. Moreover, the distortion of the IrO6 octahedron reduces with increasing doping level. Therefore, blue shift occurs of the Raman scattering peaks. The temperature dependence of the Raman spectrum is also studied. It is found that the frequencies of the A1g and B1g vibration modes increase with temperature decreasing and an abnormal jump occurs around 110 K, which is believed to be correlated with the structural change and the magnetic transition around this temperature.
-
Keywords:
- spin-orbit-coupling /
- Raman spectrum /
- crystal structure
[1] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198
[3] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402
[4] Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135
[5] Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109
[6] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[7] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329
[8] Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402
[9] Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002
[10] Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201
[11] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
[12] Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003
[13] Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518
[14] Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201
[15] Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210
[16] Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)
[17] Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777
[18] Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101
[19] Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105
[20] Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117
[21] Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257
[22] Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015
[23] Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]
[24] Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355
[25] Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148
[26] Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005
[27] Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406
-
[1] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198
[3] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402
[4] Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135
[5] Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109
[6] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[7] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329
[8] Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402
[9] Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002
[10] Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201
[11] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
[12] Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003
[13] Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518
[14] Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201
[15] Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210
[16] Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)
[17] Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777
[18] Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101
[19] Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105
[20] Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117
[21] Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257
[22] Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015
[23] Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]
[24] Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355
[25] Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148
[26] Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005
[27] Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406
Catalog
Metrics
- Abstract views: 6136
- PDF Downloads: 288
- Cited By: 0