搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

75As32S+和75As34S+离子的光谱常数与分子常数

王杰敏 王希娟 陶亚萍

引用本文:
Citation:

75As32S+和75As34S+离子的光谱常数与分子常数

王杰敏, 王希娟, 陶亚萍

Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+

Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping
PDF
导出引用
  • 采用内收缩多参考组态相互作用(MRCI)方法, 结合Dunning系列相关一致基, 分别对75As32S+和75As34S+离子的X3Σ-和A1Π电子态的势能曲线进行了计算, 进一步拟合势能曲线, 得到各电子态的光谱常数与分子常数. 首先, 采用MRCI方法结合相关一致基, aug-cc-pV5Z, 对AsS+离子的X3Σ-和A1Π 电子态进行了计算, 获得相应的势能曲线; 然后, 为进一步提高势能曲线的精度, 对其进行了三种修正计算. 采用Davidson(+Q)方法修正MRCI 方法计算过程中存在的基组大小不一致缺陷; 利用二阶Douglas-Kroll哈密顿近似, 在cc-pVQZ基组水平, 修正了相对论效应对势能曲线的影响; 利用两点能量外推法, 在aug-cc-pVQZ和aug-cc-pV5Z基组水平对各能量点的势能值进行了外推, 得到完全基组极限处的势能曲线. 最后, 利用修正(包括Davidson修正、相对论修正和基组外推)后的势能曲线, 通过Vibrot程序, 求解双原子分子核运动的径向Schrödinger方程, 并进行同位素质量识别, 得到75As32S+和75As34S+离子两个电子态的光谱常数(Te, Re, ωe, ωexe, αe 和Be)和分子常数(G(ϒ), Bv, Dv).
    The ground state X3Σ- and low-lying excited electronic state A1Π of AsS+ ion are investigated employing the full valence complete active space self-consistent field method combined with the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach. The basis set used in the calculations is Dunning correlation-consistent basis set, aug-cc-pV5Z. To improve the quality of the potential energy curves (PECs), three kinds of corrections are considered in the present work. First, the Davidson modification is adopted to deal with the size-extensity errors from the MRCI calculations. Then, relativistic correction is calculated by the second-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVQZ basis set. Finally, to eliminate the truncation errors of the basis set, the PECs of the two electronic states for each species are extrapolated to the complete basis set limit by the two-point energy extrapolation scheme. Two large basis sets, i.e., aug-cc-pVQZ and aug-cc-pV5Z, are used to perform the extrapolation calculations. With the aid of VIBROT program, all the PECs of X3Σ- and A1Π obtained here are fitted to the analytical forms, which are used to derive the spectroscopic parameters (De, D0, ωeχe, αe and Be) of 75As32S+ and 75As34S+. The effects of the Davidson modification, relativistic correction and basis set extrapolation are discussed respectively. The results indicate that the quality of almost all the spectroscopic parameters is improved by considering these corrections, which exhibit excellent agreement with the experimental data. Besides, the first 10 vibrational states for the two electronic states of 75As32S+ and 75As34S+ are determined when the rotational quantum number J equals zero. For the first 10 vibrational states, the vibrational level G(ϒ), inertial rotation constant Bv, and centrifugal distortion constant Dv are evaluated when J=0.
      通信作者: 王杰敏, wangjiemin_1980@163.com
    • 基金项目: 国家自然科学基金(批准号: 41274180)和河南省科技创新团队(批准号: 13IRTSTHN020)资助的课题.
      Corresponding author: Wang Jie-Min, wangjiemin_1980@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41274180) and the Program for Science and Technology Innovation Research Team in University of Henan Province, China (Grant No. 13IRTSTHN020).
    [1]

    Wang J M, Sun J F 2011 Acta Phys. Sin. 60 123103 (in Chinese) [王杰敏, 孙金锋 2011 60 123103]

    [2]

    Wang J M, Zhang L, Shi D H, Zhu Z L, Sun J F 2012 Acta Phys. Sin. 61 153105 (in Chinese) [王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋 2012 61 153105]

    [3]

    Wang J M, Liu Q 2013 Chin. Phys. B 22 093102

    [4]

    Shimauchi M 1969 Sci. Light 18 90

    [5]

    Shimauchi M, Karasawa S 1975 Can. J. Phys. 53 831

    [6]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure. (Vol. 4) Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p48

    [7]

    Ramanaiah M V, Lakshman S V J 1981 Acta Phys. Hung. 50 367

    [8]

    Lau K H, Brittain R D, Hildenbrand D L 1982 J. Phys. Chem. 86 4429

    [9]

    Rajamanickam N, Nagarajan K, Raja V 2001 Spectrosc. Lett. 34 43

    [10]

    Ramírez-Galicia G, Peña-Méndez E M, Pangavhane S D, Alberti M, Havel J 2010 Polyhedron 29 1567

    [11]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [12]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [13]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [14]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [15]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [16]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [17]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [18]

    Wang J M, Feng H Q, Sun J F, Shi D H, Zhu Z L 2011 Chinese J. Chem. Phys. 25 533

    [19]

    Krogh J W, Lindh R, Malmqvist P, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4, Lund University

    [20]

    Wang J M, Feng H Q, Sun J F 2013 Int. J. Quantum. Chem. 113 902

  • [1]

    Wang J M, Sun J F 2011 Acta Phys. Sin. 60 123103 (in Chinese) [王杰敏, 孙金锋 2011 60 123103]

    [2]

    Wang J M, Zhang L, Shi D H, Zhu Z L, Sun J F 2012 Acta Phys. Sin. 61 153105 (in Chinese) [王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋 2012 61 153105]

    [3]

    Wang J M, Liu Q 2013 Chin. Phys. B 22 093102

    [4]

    Shimauchi M 1969 Sci. Light 18 90

    [5]

    Shimauchi M, Karasawa S 1975 Can. J. Phys. 53 831

    [6]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure. (Vol. 4) Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p48

    [7]

    Ramanaiah M V, Lakshman S V J 1981 Acta Phys. Hung. 50 367

    [8]

    Lau K H, Brittain R D, Hildenbrand D L 1982 J. Phys. Chem. 86 4429

    [9]

    Rajamanickam N, Nagarajan K, Raja V 2001 Spectrosc. Lett. 34 43

    [10]

    Ramírez-Galicia G, Peña-Méndez E M, Pangavhane S D, Alberti M, Havel J 2010 Polyhedron 29 1567

    [11]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [12]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [13]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [14]

    Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667

    [15]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [16]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [17]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [18]

    Wang J M, Feng H Q, Sun J F, Shi D H, Zhu Z L 2011 Chinese J. Chem. Phys. 25 533

    [19]

    Krogh J W, Lindh R, Malmqvist P, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4, Lund University

    [20]

    Wang J M, Feng H Q, Sun J F 2013 Int. J. Quantum. Chem. 113 902

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究.  , 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [3] 朱遵略, 郎建华, 乔浩. AsCl自由基的基态及激发态的势能函数与光谱常数的研究.  , 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [4] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [5] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [6] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质.  , 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [8] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究.  , 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [9] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究.  , 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [10] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [11] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. 理论研究B2分子X3g-和A3u态的光谱性质.  , 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [12] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数.  , 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [16] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [17] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [18] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [19] 陈 洪, 梅 花, 沈彭年, 姜焕清. 重夸克偶素质量谱的相对论夸克模型研究(已撤稿).  , 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [20] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
计量
  • 文章访问数:  5579
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 修回日期:  2015-09-07
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map