Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fundamental circuit element and nonvolatile memory based on magnetoelectric effect

Shen Jian-Xin Shang Da-Shan Sun Young

Citation:

Fundamental circuit element and nonvolatile memory based on magnetoelectric effect

Shen Jian-Xin, Shang Da-Shan, Sun Young
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The magnetoelectric coupling effect in materials provides an additional degree of freedom of physical states for information storage and shows great potential in developing a new generation of memory devices. We use an alternative concept of nonvolatile memory based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The state of magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, is utilized to store information. Because this memory concept depends on the relationship between the charge and magnetic flux, it is actually the fourth fundamental circuit memory element in addition to memristor, memcapacitor, and meminductor, and is defined as memtranstor. Our experiments in memtranstor comprised of the[Pb(Mg1/3Nb2/3)]0.7[PbTiO3]0.3(PMN-PT)/Terfenol-D and Ni/PMN-PT/Ni multiferroic heterostructures clearly demonstrated that the magnetoelectric coefficient can be repeatedly switched not only between positive and negative polarities but also between multilevel states by applying electric fields, confirming the feasibility of this principle. In addition to nonvolatile memory, the nonvolatile logic functions, such as NOR and NAND and synaptic plasticity functions, such as long-term potentiation/depression and spiking-time-dependent plasticity are implemented in a single memtranstor by engineering the applied electric-field pulses. The combined functionalities of memory, logic, and synaptic plasticity enable the memtranstor to serve as a promising candidate for future computing systems beyond von Neumann architecture.
      Corresponding author: Shang Da-Shan, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn ; Sun Young, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015, 51671213, 51725104), the National Key RD Program of China (Grant No. 2016YFA0300701), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200).
    [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • [1] Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang. Impedance characteristics of magnetoelectric antennas. Acta Physica Sinica, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [2] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [4] Huang Ying-Zhuang,  Qi Yan,  Du An,  Liu Jia-Hong,  Ai Chuan-Wei,  Dai Hai-Yan,  Zhang Xiao-Li,  Huang Yu-Yan. Magnetoelectric coupling and external field modulation of a composite multiferroic chain. Acta Physica Sinica, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [5] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [6] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [7] Gao Jie, Zhang Min-Cang. Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [8] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [9] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [10] Yuan Chang-Lai, Zhou Xiu-Juan, Xuan Min-Jie, Xu Ji-Wen, Yang Yun, Liu Xin-Yu. Preparation and magnetoelectric characteristics of K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4 composite ceramics. Acta Physica Sinica, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [11] Zhou Wen-Liang, Xia Kun, Xu Da, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect. Acta Physica Sinica, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [12] He Yuan, Deng Tao, Wu Zheng-Mao, Liu Yuan-Yuan, Xia Guang-Qiong. Investigations on chaos synchronization characteristics of mutually coupled semiconductor lasers with asymmetrical bias currents. Acta Physica Sinica, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [13] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [14] Tang Ming-Chun, Xiao Shao-Qiu, Gao Shan-Shan, Guan Jian, Wang Bing-Zhong. Mutual coupling suppressing based on a new type electric resonant SRRs in microstrip array. Acta Physica Sinica, 2010, 59(3): 1851-1856. doi: 10.7498/aps.59.1851
    [15] Deng Heng, Yang Chang-Ping, Huang Chang, Xu Ling-Fang. Magnetically correlated I-V nonlinearity and electrical transport property of the double-layered perovskite La1.8Ca1.2Mn2O7 compound. Acta Physica Sinica, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [16] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [17] Gao Jian-Sen, Zhang Ning. Influence of iron doping level upon magnetoelectric coupling in BaTi1-zFezO3+δ-Tb1-xDyxFe2-y bilayer composites. Acta Physica Sinica, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [18] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [19] Ren Hao, Gu De-Wei, Pan Zheng-Quan, Ying He-Ping. A study on critical universality of the random-bond Potts models with self-dual quenched randomness. Acta Physica Sinica, 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [20] Wu Zhi-yuan. A DEVELOPMENT OF COHN'S THEORY ON DIRECTLY COUPLED RESONATOR FILTERS. Acta Physica Sinica, 1977, 26(3): 215-224. doi: 10.7498/aps.26.215
Metrics
  • Abstract views:  9515
  • PDF Downloads:  451
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2018
  • Accepted Date:  26 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map