Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics

Mao Xiang-Yu Zou Bao-Wen Sun Hui Chen Chun-Yan Chen Xiao-Bing

Citation:

Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics

Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiferroic materials have drawn increasing interest due to the coexistence of ferromagnetism (FM) and ferroelectricity (FE), which provides significant potentials for applications in spintronics, information storage, and sensors, etc. In this paper, the multiferroic Bi6Fe2-xCoxTi3O18 (BFCT-x,x=0-2.0) ceramics are prepared by the solid-state reaction. The BFCT-x samples belong to Aurivillius structure containing five perovskite layers clapped between two Bi-O layers. The lattice constants a, b, and c of BFCT-x samples increase simultaneously with increasing cobalt content up to 0.6 and then decrease with further addition of cobalt. The magnetic and ferroelectric properties, and their corresponding Curie temperatures are measured. At room temperature (RT), the magnetism of the BFCT-0, BFCT-1.8 and BFCT-2.0 samples can be understood by the presence of the antiferromagnetic (AFM) interaction with the dominant paramagnetism (PM) state, which is consistent with the linear behavior of the M-H plot. The Fe3+-O-Fe3+ and Co3+-O-Co3+ interactions present in the BFCT-x samples lead to AFM. The BFCT-0.21.0 samples show saturated magnetic loops, while the BFCT-1.2 sample is far from saturation even under an applied magnetic field of 10 kOe. The M-H curve of BFCT-1.6 sample shows a weak ferromagnetism. The Co content (x=0.2-1.6) dependences of 2Ms and 2Mr have been recorded. Both the 2Ms and 2Mr experience first-increase-then-decrease variation tendency with their maximal values of ~ 4.49 emu/g and ~ 0.89 emu/g located at x =0.6 and x =1.0, respectively. As the cobalt content varies from x=0.2 to x=1.2, the paramagnetic-ferromagnetic phase transition temperature (TMC) decreases from 752 to 372 K. At RT, the BFCT-x samples are ferroelectric, and the maximum and minimum values of remnant polarization (2Pr) are about 8.0 up C/cm2 (x=0.6) and 1.1 up C/cm2(x=1.2), respectively. The 2Pr of the BFCT-0.6 is about three times larger than that of Bi5Fe2Ti3O18 (x=0) sample. Furthermore, the dependence of 2Pr on Co content first increases with Co doping when x qslant 0.6, and decreases from x=0.8 to x=1.2, and then increases again. The ferroelectric Curie temperature Tc of the BFCT-x samples increases with increasing x up to 0.8 and then decreases with further increasing cobalt content. It is noteworthy that the Tc of BFCT-1.0 is 2 K lower than that of BFCT-0.6, while the 2Pr decreases by 63%. It is seen that the 2Pr and 2Mr increase simultaneously with increasing Co content (below 0.6). When 0.8 x qslant 1.0, the 2Mr increases while 2Pr decreases with increasing Co content. After x1.2, the 2Mr decreases while 2Pr increases with increasing Co content. The repelling between the FE and FM as discussed above may result from the magnetic-crystalline and ferroelectric-crystalline anisotropy. The mechanism of this phenomenon is not quite clear and needs further investigation.
      Corresponding author: Chen Xiao-Bing, xbchen@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402256, 11374227).
    [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghamare U V, Spaldine N A, Rabe K M, Wattig M, Ramesh R 2003 Science 299 1719

    [2]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [3]

    Ramesh R, Spaldin N A 2007 Nature Mater. 6 21

    [4]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [5]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [6]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [7]

    Snedden A, Hervoches C H, Lightfoot P 2003 Phys. Rve. B 67 092102

    [8]

    Yuan B, Yang J, Song D P, Zuo X Z, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2015 J. Appl. Phys. 117 023907

    [9]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, ShindeA B 2013 Appl. Phys. Lett. 103 122901

    [10]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [11]

    Fouskova A, Cross L E 1970 J. Appl. Phys. 41 2834

    [12]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113

    [13]

    Singh R S, Bhimasankararn T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567

    [14]

    Mao X Y, Wang W, Chen X B 2008 Solid State Commun. 147 186

    [15]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 59 8160]

    [16]

    Yang J, Tong W, Liu Z, Zhu X B, Dai J M, Song W H, 1 Yang Z R, Sun Y P 2012 Phys. Rve. B 86 104410

    [17]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402

    [18]

    Palizdar M, Comyn T P, Ward M B, Brown A P, Harrington J P, Kulkarni S, Keeney L, Roy S, Pemble M, Whatmore R, Quinn C, Kilcoyne S H, Bell A J 2012 J. Appl. Phys. 112 073919

    [19]

    Chen C Y, Hou S, Mao X Y, Chen X B 2013 Mater. Sci. Forum 745 142

    [20]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413

    [21]

    Shannon R D 1976 Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr 32 751

    [22]

    Rondinelli J M, Spaldin N A 2009 Phys. Rev. B 79 054409

    [23]

    Song G L, Luo Y P, Su J, Zhou X H, Chang F G 2013 Acta Phys. Sin. 62 097502 (in Chinese) [宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高 2013 62 097502]

    [24]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [25]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta. Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 7141]

    [26]

    Sun H, Lu X M, Xu T T, Su J, Jin Y M, Ju C C, Huang F Z, Zhu J S 2012 J. Appl. Phys. 111 124116

    [27]

    Mao X Y, Wei W, Hui S, Lu Y L, Chen X B 2012 J. Mater. Sci. 47 2960

    [28]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402

    [29]

    Li J B, Huang Y P, Rao G H, Liu G Y, Luo J, Chen J R, Liang J K 2010 Appl. Phys. Lett. 96 222903

    [30]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

  • [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghamare U V, Spaldine N A, Rabe K M, Wattig M, Ramesh R 2003 Science 299 1719

    [2]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [3]

    Ramesh R, Spaldin N A 2007 Nature Mater. 6 21

    [4]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [5]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [6]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [7]

    Snedden A, Hervoches C H, Lightfoot P 2003 Phys. Rve. B 67 092102

    [8]

    Yuan B, Yang J, Song D P, Zuo X Z, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2015 J. Appl. Phys. 117 023907

    [9]

    Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, ShindeA B 2013 Appl. Phys. Lett. 103 122901

    [10]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [11]

    Fouskova A, Cross L E 1970 J. Appl. Phys. 41 2834

    [12]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113

    [13]

    Singh R S, Bhimasankararn T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567

    [14]

    Mao X Y, Wang W, Chen X B 2008 Solid State Commun. 147 186

    [15]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 59 8160]

    [16]

    Yang J, Tong W, Liu Z, Zhu X B, Dai J M, Song W H, 1 Yang Z R, Sun Y P 2012 Phys. Rve. B 86 104410

    [17]

    Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402

    [18]

    Palizdar M, Comyn T P, Ward M B, Brown A P, Harrington J P, Kulkarni S, Keeney L, Roy S, Pemble M, Whatmore R, Quinn C, Kilcoyne S H, Bell A J 2012 J. Appl. Phys. 112 073919

    [19]

    Chen C Y, Hou S, Mao X Y, Chen X B 2013 Mater. Sci. Forum 745 142

    [20]

    Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413

    [21]

    Shannon R D 1976 Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr 32 751

    [22]

    Rondinelli J M, Spaldin N A 2009 Phys. Rev. B 79 054409

    [23]

    Song G L, Luo Y P, Su J, Zhou X H, Chang F G 2013 Acta Phys. Sin. 62 097502 (in Chinese) [宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高 2013 62 097502]

    [24]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [25]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta. Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 7141]

    [26]

    Sun H, Lu X M, Xu T T, Su J, Jin Y M, Ju C C, Huang F Z, Zhu J S 2012 J. Appl. Phys. 111 124116

    [27]

    Mao X Y, Wei W, Hui S, Lu Y L, Chen X B 2012 J. Mater. Sci. 47 2960

    [28]

    Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402

    [29]

    Li J B, Huang Y P, Rao G H, Liu G Y, Luo J, Chen J R, Liang J K 2010 Appl. Phys. Lett. 96 222903

    [30]

    Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F 2000 Phys. Rev. B 61 6559

  • [1] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline. Acta Physica Sinica, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [3] Huang Yu-Tian, Wang Yu, Zhu Min-Min, Lü Ting, Yang Hong-Chun, Li Xiang, Wang Xiu-Zhang, Liu Mei-Feng, Li Shao-Zhen. (1-x)Sr3Sn2O7+xCa3Mn2O7 ceramics and their photo-electric characteristics. Acta Physica Sinica, 2018, 67(15): 154203. doi: 10.7498/aps.67.20180954
    [4] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [5] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [6] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [7] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [8] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [9] Wang Hui, Lin Jia-Jun, He Jin-Qiang, Liao Yong-Li, Li Sheng-Tao. The effects of precipitant on the defect structures and properties of ZnO varistor ceramics. Acta Physica Sinica, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [10] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [11] Wu Jun-Bo, Tang Xin-Gui, Jia Zhen-Hua, Chen Dong-Ge, Jiang Yan-Ping, Liu Qiu-Xiang. Influences of Y- and La-dopant on the thermal conductive properties and dielectric relaxation of Al2O3-based ceramics. Acta Physica Sinica, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [12] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [14] Han Li-An, Chen Chang-Le, Dong Hui-Ying, Wang Jian-Yuan, Gao Guo-Mian, Luo Bing-Cheng. Magnetic and electrical properties of layered perovskite La1.3Sr1.7Mn1-xCuxO7. Acta Physica Sinica, 2008, 57(1): 541-544. doi: 10.7498/aps.57.541
    [15] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [16] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [17] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] Hui Rong, Zhu Jun, Lu Wang-Ping, Mao Xiang-Yu, Qiang Feng, Chen Xiao-Bing. Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics. Acta Physica Sinica, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [19] Liu Peng, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [20] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
Metrics
  • Abstract views:  5613
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2015
  • Accepted Date:  20 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map