-
采用柠檬酸-硝酸盐法制备了Bi6−xNdxFe1.4Ni0.6Ti3O18 (BNFNT-x, x = 0.00, 0.10, 0.20, 0.25和0.30)前驱液, 再经过干燥、烧结过程制备了单相多晶材料. 研究发现, 少量Nd掺杂有助于提高样品的铁电性能, BNFNT-0.25样品的铁电性能(2Pr)最大, 约达到19.7
${\text{μ}}{\rm C/cm}^2$ . 室温下BNFNT-0.20样品磁性能(2Ms)最大约达到 4.132 emu/g (1 emu/g = 10–3 A·m2/g). 变温介电损耗结果表明Nd掺杂降低了Fe3+和Fe2+间的电子转移或跃迁的激活能. X射线光电子能谱结果表明小量Nd掺杂有助于增强Bi离子稳定性, 对改善样品的铁电性能有积极意义.Single phase polycrystalline Nd-modified BNFNT-x series samples are obtained from the precursors of the same chemical formula, and prepared by using the citric acid-nitrate method. The X-ray photoelectron spectroscopy measurement indicates that a slight Nd modification does not exert significant influence on the stability of the octahedral FeO6, nor NiO6 nor TiO6. When the molar concentration of Nd exceeds 0.25, the stability of BiO layer is cemented and conducive to the insulating role of BiO layer. It is seen that a small quantity of Nd substitution for bismuth can improve the ferroelectric polarization (2Pr) of ~ 19.7$ \mu {\rm C/cm }^2$ . The room-temperature magnetization (2Ms) can reach a maximal value of ~ 4.132 emu/g (1 emu/g = 10−3 A·m2/g)in the BNFNT-0.20 sample. Two anomalies are observed in the temperature-dependent dielectric loss spectrum: one is situated in the temperature range from 200 K to 400 K and the other is located in the vicinity of 900 K. It is considered that the loss anomaly found near 900 K might be associated with the viscous motion of ferroelectric domain walls. In addition, the loss peak shown in a temperature range from 200 K to 400 K shifts toward the higher temperature with measuring frequency increasing, indicating the characteristics of dielectric relaxor behavior. The activation energy is evaluated to be 0.287−0.366 eV, which suggests that the relaxor is associated with the electrons transfer and hop between Fe3+ and Fe2+. The room-temperature magnetization (2Ms) has reached a maximal value of ~ 4.132 emu/g in the BNFNT-0.20 sample. The lattice distortion due to the introduction of Nd changes the angle of such antiferromagnetic coupling bonds as Fe3+—O—Fe3+, Fe3+—O—Ni3+ and Ni3+—O—Ni3+, which leads the AFM spin states to break, and thus increases the magnetic properties. While with further modification of Nd, the drastic lattice distortion reduces the occupation of the B-sites of the magnetic ions, which might be responsible for further deteriorating the magnetic properties.-
Keywords:
- layered perovskite /
- ceramics /
- multiferroic /
- dielectric properties
[1] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar
[2] Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar
[3] Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar
[4] Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar
[5] Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar
[6] Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar
[7] Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar
[8] Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar
[9] Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar
[10] Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar
[11] Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar
[12] Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar
[13] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 64 217701Google Scholar
Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar
[14] Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar
[15] Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar
[16] Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar
[17] Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar
[18] Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar
[19] Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar
[20] Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar
[21] Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar
[22] Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar
[23] Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar
[24] Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar
[25] Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar
[26] Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar
[27] Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar
[28] Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar
[29] Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar
[30] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar
[31] Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar
[32] Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar
[33] Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar
[34] Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar
[35] Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar
[36] Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar
[37] Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar
[38] Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar
[39] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar
[40] Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar
[41] Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar
[42] Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar
[43] Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar
[44] Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar
[45] 雷志威 2015 博士学位论文(合肥: 中国科学技术大学)
Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
-
图 5 (a) BNFNT-x 样品2Pr-E曲线; (b)电场约为140 kV/cm下Nd含量对2Pr的影响; (c)电场约为190 kV/cm下Nd含量对2Pr的影响
Fig. 5. (a) The 2Pr-E curves of BNFNT-x samples; (b) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 140 kV/cm; (c) dependence of 2Pr of BNFNT-x ceramics on Nd content x under the electric filed about 190 kV/cm.
图 7 (a)—(e)测量频率为1—492.2 kHz时BNFNT-x样品的介电损耗峰 (插图为BNFNT-x样品相应的激活能)(a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18; (d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) BNFNT-x样品Nd含量对激活能的影响
Fig. 7. (a)−(e) Dielectric loss peak with the measurement frequencies from 1 kHz to 492.2 kHz (inset is the corresponding activation energy of BNFNT-x sample): (a) Bi6Fe1.4Ni0.6Ti3O18; (b) Bi5.9Nd0.1Fe1.4Ni0.6Ti3O18; (c) Bi5.8Nd0.2Fe1.4Ni0.6Ti3O18;(d) Bi5.75Nd0.25Fe1.4Ni0.6Ti3O18; (e) Bi5.7Nd0.3Fe1.4Ni0.6Ti3O18; (f) dependence of activation energy of BNFNT-x ceramics on Nd content x.
-
[1] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Vieland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719Google Scholar
[2] Kimura T, Kawamoto S, Yamada Y, Azuma M, Takano M, Tokura Y Y 2003 Phys. Rev. B 67 180401Google Scholar
[3] Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889Google Scholar
[4] Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567Google Scholar
[5] Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M 2002 Appl. Phys. Lett. 80 2746Google Scholar
[6] Noguchi Y, Miyayama M 2001 Appl. Phys. Lett. 78 1903Google Scholar
[7] Noguchi Y J, Goshima Y, Miyayama M, Miwa I 2000 Jpn. J. Appl. Phys. 39 L1259Google Scholar
[8] Watanabe T, Funakubo H, Osada M, Noguchi Y, Miyayama M 2002 Appl. Phys. Lett. 80 100Google Scholar
[9] Yao Y Y, Song C H, Bao P, Su D, Lu X M, Zhu J S, Wang Y N 2004 J. Appl. Phys. 95 3126Google Scholar
[10] Kuble F, Schmid H 1992 Ferroelectrics 129 101Google Scholar
[11] Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901Google Scholar
[12] Liu Z, Yang J, Tang X W, Yin L H, Zhu X B, Dai J M, Sun Y P 2012 Appl. Phys. Lett. 101 122402Google Scholar
[13] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵 2015 64 217701Google Scholar
Mao X Y, Zou B W, Sun H, Chen C Y, Chen X B 2015 Acta Phys. Sin. 64 217701Google Scholar
[14] Li X N, Zhu Z, Li F, Peng R R, Zhai X F, Fu Z P, Lu Y L 2015 J. Eur. Ceram. Soc. 35 3437Google Scholar
[15] Xiong P, Yang J, Qin Y F, Huang W J, Tang X W, Yin L H, Song W H, Dai J M, Zhu X B, Sun Y P 2017 Ceram. Int. 43 4405Google Scholar
[16] Fouskove A, Cross L E 1970 J. Appl. Phys. 41 2834Google Scholar
[17] Lu W P, Mao X Y, Chen X B 2004 J. Appl. Phys. 95 1973Google Scholar
[18] Wang J L, Li L, Peng R R, Fu Z P, Liu M, Lu Y L 2015 J. Am. Ceram. Soc. 98 1528Google Scholar
[19] Bai W, Chen C, Yang J, Zhang Y Y, Qi R J, Huang R, Tang X D, Duan C G, Chu J H 2015 Sci. Rep. 5 17846Google Scholar
[20] Yu Z H, Yu B Y, Liu Y, Zhou P, Jing J, Lu Y X, Sun H, Chen X B, Ma Z J, Zhang T J, Huang C W, Qi Y J 2017 Ceram. Int. 43 14996Google Scholar
[21] Liu S, Yan S Q, Luo H, Yao L L, Hu Z W, Huang S X, Deng L W 2018 J. Mater. Sci. 53 1014Google Scholar
[22] Yang J, Yin L H, Liu Z, Zhu X B, Song W H, Dai J M, Yang Z R, Sun Y P 2012 Appl. Phys. Lett. 101 012402Google Scholar
[23] Srinivas A, Kumar M M, Suryanarayana S V, Bhimasankaram T 1999 Mater. Res. Bull. 34 989Google Scholar
[24] Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121Google Scholar
[25] Li X N, Ju Z, Li F, Huang Y, Xie Y M, Fu Z P, Knize R J, Lu Y L 2014 J. Mater. Chem. 2 13366Google Scholar
[26] Mao X Y, Mao F W, Chen X B 2006 Integr. Ferroelectr. 79 155Google Scholar
[27] Yuan B, Yang J, Chen J, Zuo X Z, Yin L H, Tang X W, Zhu X B, Dai J M, Song W H, Sun Y P 2014 Appl. Phys. Lett. 104 062413Google Scholar
[28] Wang C H, Liu Z F, Yu L, Tian Z M, Yuan S L 2011 Mater. Sci. Eng. B 176 1243Google Scholar
[29] Zuo X Z, Yang J, Song D P, Yuan B, Tang X W, Zhang K J, Zhu X B, Song W H, Dai J M, Sun Y P 2014 J. Appl. Phys. 116 759Google Scholar
[30] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar
[31] Hussain S, Hasanain S K, Jaffari G H, Faridi S, Rehman F, Abbas T A, Shah S I 2013 J. Am. Ceram. Soc. 96 3141Google Scholar
[32] Kojima S, Imaizumi R, Hamazaki S, Takashige M 1994 Jpn J. Appl. Phys. Part 1 33 5559Google Scholar
[33] Zhang S T, Chen Y F, Liu Z G, Ming N B 2005 J. Appl. Phys. 97 104106Google Scholar
[34] Mao X Y, Sun H, Wang W, Lu Y L, Chen X B 2012 Solid State Commun. 152 483Google Scholar
[35] Mao X Y, Wang W, Sun H, Lu Y L, Chen X B 2012 Integr. Ferroelectr. 132 16Google Scholar
[36] Wu Y Y, Zhang D M, Yu J, Wang Y B 2009 Mater. Chem. Phys. 113 422Google Scholar
[37] Shulman H S, Damjanovic D, Setter N 2000 J. Am. Ceram. Soc. 83 528Google Scholar
[38] Bai W, Chen G, Zhu J Y, Yang J, Lin T, Meng X J, Tang X D, Duan C G, Chu J H 2012 Appl. Phys. Lett. 100 082902Google Scholar
[39] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kito H 2005 Nature 436 1136Google Scholar
[40] Liu Y Y, Chen X M, Liu X Q, Li L 2007 Appl. Phys. Lett. 90 192905Google Scholar
[41] Maglione M, Subramanian M A 2008 Appl. Phys. Lett. 93 032902Google Scholar
[42] Patwe S J, Achary S N, Manjanna J, Tyagi A K, Deshpande S K, Mishra S K, Krishna P S R, Shinde A B 2013 Appl. Phys. Lett. 103 122901Google Scholar
[43] Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta Materialia 57 5137Google Scholar
[44] Suryanarayana S V, Srinivas A, Singh R S 1999 Proc. SPIE 3903 232Google Scholar
[45] 雷志威 2015 博士学位论文(合肥: 中国科学技术大学)
Lei Z W 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
计量
- 文章访问数: 8256
- PDF下载量: 47
- 被引次数: 0