Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model

Yu Yi-Xiang Song Ning-Fang Liu Wu-Ming

Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model

Yu Yi-Xiang, Song Ning-Fang, Liu Wu-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Lipkin-Meshkov-Glick (LMG) model originally describes a Fermionic many-body system in nuclear physics. However, in recent years, it has been widely found in condensed matter physics, quantum information systems, and quantum optics, and it is of wider and wider interest. Previous studies on this model mainly focused on the physics under the thermal dynamical limit, such as quantum phase transitions and quantum entanglement. There are also some researches about LMG model with finite size in some special limits, but the finite-size effect on energy spectrum is not very clear yet. This is the main motivation of this work. In this paper, the exact diagonalization method and the quantum perturbation theory are used to calculate and analyze the energy-level structure of the LMG model at a finite N. To solve it, we first map this model into the angular-momentum space to obtain a reduced LMG model. By this mapping, the dimension of Hilbert space is reduced to N+1 from 2N. The exact solution of its energy levels can be obtained easily in the U(1) limit where the total spin is conserved. We find that the levels are woven into a fishing-net structure in the U(1) limit. While away from the U(1) limit, the crossings between even and odd levels will open a gap, and the system's energy levels will be grouped into pairs with an odd and an even level, forming some bound states, called doublet states, and the parity of each doublet state will oscillate as the Zeeman field increases. This work gives the values of the critical Zeeman field for the parity crossings. These critical values shift as the interacting parameters and disappear at zero in the Z2 limit. In the Z2 limit, the system energy levels form splittings near the zero Zeeman field. In this article, we analytically calculate the relationship between these energy gaps and the Zeeman field. For odd and even number N, the parity of each state has a different behavior. Specifically, the ground state and the doublet excited states of the system with odd N will suffer a parity reversion at zero Zeeman field, while the states with even N will not. By tuning the interacting parameters, we also study the crossover from the U(1) limit to the Z2 limit. The parity oscillation we find in this system is a very important physical phenomenon, which also exists in some other systems like optical cavity quantum electrodynamics and magnetic molecule system.
      PACS:
      Corresponding author: Yu Yi-Xiang, yyxxx@buaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 11434015, 61227902, 11611530676), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB01020300, XDB21030300).
    [1]

    Lipkin H J, Meshkov N, Glick A J 1965 Nucl. Phys. 62 188

    [2]

    Meshkov N, Glick A J, Lipkin H J 1965 Nucl. Phys. 62 199

    [3]

    Glick A J, Lipkin H J, Meshkov N 1965 Nucl. Phys. 62 211

    [4]

    Dusuel S, Vidal J 2004 Phys. Rev. Lett. 93 237204

    [5]

    Morrison S, Parkins A S 2008 Phys. Rev. Lett. 100 040403

    [6]

    Pan F, Draayer J P 1999 Phys. Lett. B 451 1

    [7]

    Ribeiro P, Vidal J, Mosseri R 2007 Phys. Rev. lett. 99 050402

    [8]

    Ribeiro P, Vidal J, Mosseri R 2008 Phys. Rev. E 78 021106

    [9]

    Co'G, de Leo S 2018 Int. J. Mod. Phys. E 27 1850039

    [10]

    Yu Y X, Ye J, Zhang C 2016 Phys. Rev. A 94 023830

    [11]

    Huang Y, Li T, Yin Z Q 2018 Phys. Rev. A 97 012115

    [12]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401

    [13]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109 160402

    [14]

    Kou S P, Liang J Q, Zhang Y B, Pu F C 1999 Phys. Rev. B 59 11792

    [15]

    Liang J Q, Mller-Kirsten H J W, Park D K, Pu F C 2000 Phys. Rev. B 61 8856

    [16]

    Jin Y H, Nie Y H, Liang J Q, Chen Z D, Xie W F, Pu F C 2000 Phys. Rev. B 62 3316

    [17]

    Larson J 2010 Europhys. Lett. 90 54001

    [18]

    ZhouY, Ma S L, Li B, Li X X, Li F L, Li P B 2017 Phys. Rev. A 96 062333

    [19]

    Chen G, Liang J Q, Jia S 2009 Opt. Express 17 19682

  • [1]

    Lipkin H J, Meshkov N, Glick A J 1965 Nucl. Phys. 62 188

    [2]

    Meshkov N, Glick A J, Lipkin H J 1965 Nucl. Phys. 62 199

    [3]

    Glick A J, Lipkin H J, Meshkov N 1965 Nucl. Phys. 62 211

    [4]

    Dusuel S, Vidal J 2004 Phys. Rev. Lett. 93 237204

    [5]

    Morrison S, Parkins A S 2008 Phys. Rev. Lett. 100 040403

    [6]

    Pan F, Draayer J P 1999 Phys. Lett. B 451 1

    [7]

    Ribeiro P, Vidal J, Mosseri R 2007 Phys. Rev. lett. 99 050402

    [8]

    Ribeiro P, Vidal J, Mosseri R 2008 Phys. Rev. E 78 021106

    [9]

    Co'G, de Leo S 2018 Int. J. Mod. Phys. E 27 1850039

    [10]

    Yu Y X, Ye J, Zhang C 2016 Phys. Rev. A 94 023830

    [11]

    Huang Y, Li T, Yin Z Q 2018 Phys. Rev. A 97 012115

    [12]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401

    [13]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109 160402

    [14]

    Kou S P, Liang J Q, Zhang Y B, Pu F C 1999 Phys. Rev. B 59 11792

    [15]

    Liang J Q, Mller-Kirsten H J W, Park D K, Pu F C 2000 Phys. Rev. B 61 8856

    [16]

    Jin Y H, Nie Y H, Liang J Q, Chen Z D, Xie W F, Pu F C 2000 Phys. Rev. B 62 3316

    [17]

    Larson J 2010 Europhys. Lett. 90 54001

    [18]

    ZhouY, Ma S L, Li B, Li X X, Li F L, Li P B 2017 Phys. Rev. A 96 062333

    [19]

    Chen G, Liang J Q, Jia S 2009 Opt. Express 17 19682

  • [1] Tang Yuan-Jiang, Liang Chao, Liu Yong-Chun. Research progress of parity-time symmetry and anti-symmetry. Acta Physica Sinica, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [2] Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [3] Hu Zhou,  Zeng Zhao-Yun,  Tang jia,  Luo Xiao-bing. Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [4] Lu Gong-Ru, Li Xiang, Li Pei-Ying. Probing R-parity violating interactions from top quark polarization at LHC. Acta Physica Sinica, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [5] Pan Liu-Xian, Yu Hui-You, Yan Jia-Ren. Time-dependent perturbation theory of KdV soliton. Acta Physica Sinica, 2008, 57(3): 1316-1320. doi: 10.7498/aps.57.1316
    [6] Pan Liu-Xian, Zuo Wei-Ming, Yan Jia-Ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation. Acta Physica Sinica, 2005, 54(1): 1-5. doi: 10.7498/aps.54.1
    [7] Liu Tian-Gui, Yan Jia-Ren, Pan Liu-Xian. . Acta Physica Sinica, 2002, 51(1): 6-9. doi: 10.7498/aps.51.6
    [8] NIE YI-HANG, SHI YUN-LONG, ZHANG YUN-BO, LIANG JIU-QING, PU FU-KE. MACROSCOPIC QUANTUM EFFECT IN SINGLE DOMAIN ANTIFERROMAGNETIC PARTICLES IN AN EXTERNAL MAGNETIC FIELD. Acta Physica Sinica, 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
    [9] ZHAO YONG-MING, YAN JIA-REN. THE THEORY OF THE PERTURBATION EQUATION OF MKdV. Acta Physica Sinica, 1999, 48(11): 1976-1982. doi: 10.7498/aps.48.1976
    [10] WEN GEN-WANG. THE STEEPEST DESCENT PERTURBATION THEORY FOR THE EXCITED STATE OF A QUANTUM SYSTEM. Acta Physica Sinica, 1991, 40(9): 1388-1395. doi: 10.7498/aps.40.1388
    [11] WU BI-RU, XU YUN-FEI, ZHENG YOU-FENG, HU YONG-YAN, LU JIE. THE ODD PARITY AUTOIONIZING SPECTRA OF YBI. Acta Physica Sinica, 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [12] WEN GEN-WANG. DEGENERATE GROUND STATE STEEPEST DESCENT PERTURBATION THEORY. Acta Physica Sinica, 1988, 37(12): 1981-1986. doi: 10.7498/aps.37.1981
    [13] FU PAN-MING, YE PEI-XIAN. NONPERTURBATION THEORY OF TIME-RESOLVED DEGENE-RATE FOUR-WAVE MIXING IN TWO-LEVEL SYSTEM. Acta Physica Sinica, 1984, 33(9): 1261-1268. doi: 10.7498/aps.33.1261
    [14] LI MING-FU, REN SHANG-YUAN, MAO DE-QIANG. THEORY OF T2 SYMMETRIC DEEP LEVEL WAVE FUNCTIONS IN Si. Acta Physica Sinica, 1983, 32(10): 1263-1272. doi: 10.7498/aps.32.1263
    [15] YANG GUI-LIN, XU YOU, CHU DA-PING, XUE DENG-PING, ZHAI HONG-RU. INFLUENCE OF ODD PARITY CRYCTAL FIELD ON LEVEL SPLITTING OF Ce3+ IONS. Acta Physica Sinica, 1983, 32(2): 259-266. doi: 10.7498/aps.32.259
    [16] ZHENG ZHAO-BO. AN ALTERNATE PROOF OF THE INFINITE ORDER PERTURBATION THEORY BY MATRIX PARTITION. Acta Physica Sinica, 1981, 30(7): 866-877. doi: 10.7498/aps.30.866
    [17] CHENG LU. THE PERTURBATION THEORY FOR THE FIRST-ORDER APPROXIMATION OF THE DIFFRACTION PROBLEMS. Acta Physica Sinica, 1966, 22(2): 223-232. doi: 10.7498/aps.22.223
    [18] CHANG TSUNG-HUA, YU YOU-WEN, TZU HSI-CHUEN. THE STRUCTURE OF THE EVEN PARITY STATES OF O16 (I). Acta Physica Sinica, 1965, 21(5): 897-906. doi: 10.7498/aps.21.897
    [19] CHEN SHI-KANG. PERTURBATION THEORY OF TRANSVERSE TRANSPORT PROCESS IN STRONG MAGNETIC FIELD. Acta Physica Sinica, 1964, 20(7): 579-595. doi: 10.7498/aps.20.579
    [20] LIU JO-YANG. THE PROCESS Σ0→Λ+γ AND THE PARITY CONSERVATION. Acta Physica Sinica, 1961, 17(12): 587-591. doi: 10.7498/aps.17.587
Metrics
  • Abstract views:  8053
  • PDF Downloads:  205
Publishing process
  • Received Date:  31 May 2018
  • Accepted Date:  12 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map