Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microbubble oscillation induced acoustic micromixing in microfluidic device

Zhao Zhang-Feng Zhang Wen-Jun Niu Li-Li Meng Long Zheng Hai-Rong

Citation:

Microbubble oscillation induced acoustic micromixing in microfluidic device

Zhao Zhang-Feng, Zhang Wen-Jun, Niu Li-Li, Meng Long, Zheng Hai-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Microfluidic is of great significance for biomedical research and chemical engineering. The mixing of liquids is an essential and necessary procedure for the sample preparation. Due to the low Reynolds number, laminar flow is dominant in a microfluidic channel and it is difficult to mix the fluids in the microchannel quickly and effectively. To improve the mixing efficiency of the liquids in microfluidic channels, we develop an acoustic mixer based on single microbubble oscillation. By designing the cylinder structure on the bottom surface, when the fluid flows through cylinder structure with a diameter of 40 m, the microbubble can be generated by the surface tension of the liquid. The device is fabricated by using standard soft lithography and the replica moulding technique, ensuring the stability and repeatability of the mixing. A piezoelectric transducer (PZT) with a resonant frequency of 165 kHz is attached to the polydimethylsiloxane microfluidic device on the glass substrate by ultrasound coupling gel. When the microbubble is excited by the PZT at a resonant frequency of 165 kHz, microbubble oscillates immediately. To verify whether ultrasound can induce microbubble cavitation, a passive cavitation detection system is established. The results show that the higher harmonics can be detected, indicating that the stable cavitation occurs. The microstreaming induced by the oscillating microbubble disturbs the fluid dramatically, achieving the mixture of liquids. Particle image velocimetry method is utilized to characterize the microstreaming, and a pair of counter-rotating vortices in the microchannel is detected. Furthermore, to test the performance of the device, the deionized water and rhodamine B are injected into the Y-shape microchannel. Relative mixing index is used to quantitatively analyze the mixing performance by measuring the grayscale values of the optical images. The results indicate that with the increase of the input power, mixing time can be shortened correspondingly. When the input power is 14.76 W, the mixing process is ultrafast, within 37.5 ms the high mixing uniformity can be achieved to be 92.7%. With the advantages of simple design, high efficient and ultrafast mixing, and low power consumption, this oscillating microbubble-based acoustic micromixer may provide a powerful tool for various biochemical studies and applications.
      Corresponding author: Meng Long, long.meng@siat.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674347), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018393), the Natural Science Foundation of Guangdong Province, China (Grant No. 2017B030306011), and the Shenzhen Basic Research Program, China (Grant No. JCYJ20160429184552717).
    [1]

    Jia X, Wang W, Han Q, Wang Z, Jia Y, Hu Z 2016 ACS Med. Chem. Lett. 7 429

    [2]

    Kastania A S, Tsougeni K, Papadakis G, Gizeli E, Kokkoris G, Tserepi A, Gogolides E 2016 Anal. Chim. Acta 942 58

    [3]

    Othman R, Vladisavljević G T, Bandulasena H C H, Nagy Z K 2015 Chem. Eng. J. 280 316

    [4]

    Lee C Y, Fu L M 2017 Sensor Actuat. B:Chem. 259 677

    [5]

    Sritharan K, Strobl C J, Schneider M F, Wixforth 2006 Appl. Phys. Lett. 88 054102

    [6]

    Ai X P, Ni B Y 2017 Acta Phys. Sin. 66 234702 (in Chinese) [艾旭鹏, 倪宝玉 2017 66 234702]

    [7]

    Chen X, Zhang L 2017 Microchim. Acta 184 3639

    [8]

    De B D, Recht M I, Bhagat A A, Torres F E, Bell A G, Bruce R H 2011 Lab. Chip 11 3313

    [9]

    Lang Q, Ren Y, Hobson D, Tao Y, Hou L K, Jia Y K, Hu Q M, Liu J W, Zhao X, Jiang H Y 2016 Biomicrofluidics 10 064102

    [10]

    De L F, Soref R A, Vmm P 2017 Sci. Rep. 7 3401

    [11]

    Abbas Y, Miwa J, Zengerle R, Stetten F V 2013 Micromachines 4 80

    [12]

    Xia Q, Zhong S 2012 J. Visual-Japan 15 57

    [13]

    Luong T D, Phan V N, Nguyen N T 2011 Microfluid. Nanofluid. 10 619

    [14]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910

    [15]

    Chen X, Li T 2017 Chem. Eng. J. 313 1406

    [16]

    Huang P H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y C, Chan C Y, Huang T J 2013 Lab Chip 13 3847

    [17]

    Razmkhah M, Moosavi F, Mosavian M T H, Ahmadpour A 2018 Desalination 432 55

    [18]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

    [19]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperther. 23 105

    [20]

    Birkin P R, Offin D G, Vian C J, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [21]

    Crum L A 1984 Ultrasonics 22 215

    [22]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 60 046202]

    [23]

    Hu Y, Ge Y, Zhang D, Zheng H R, Gong X F 2009 Acta Phys. Sin. 58 4746 (in Chinese) [胡艺, 葛云, 章东, 郑海荣, 龚秀芬 2009 58 4746]

    [24]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085

    [25]

    Miller D L 1988 J. Acoust. Soc. Am. 84 1378

    [26]

    Marmottant P, Hilgenfeldt S 2003 Nature 423 153

    [27]

    Patel M V, Nanayakkara I A, Simon M G, Lee A P 2014 Lab Chip 14 3860

    [28]

    Meng L, Cai F, Jiang P, Deng Z T, Li F, Niu L L, Chen Y, Wu J R, Zheng H R 2014 Appl. Phys. Lett. 104 073701

    [29]

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306 (in Chinese) [于洁, 郭霞生, 屠娟, 章东 2015 64 094306]

    [30]

    Hashmi A, Xu J 2014 J. Lab. Auto. 19 488

    [31]

    Bertin N, Spelman T A, Combriat T, Hue H, Stphan O, Lauga E, Marmottant P 2017 Lab Chip 17 1515

    [32]

    Arden J, Deltau G, Huth V, Kringel U, Peros D, Dreshage K H 1991 J. Lumen. 48 352

  • [1]

    Jia X, Wang W, Han Q, Wang Z, Jia Y, Hu Z 2016 ACS Med. Chem. Lett. 7 429

    [2]

    Kastania A S, Tsougeni K, Papadakis G, Gizeli E, Kokkoris G, Tserepi A, Gogolides E 2016 Anal. Chim. Acta 942 58

    [3]

    Othman R, Vladisavljević G T, Bandulasena H C H, Nagy Z K 2015 Chem. Eng. J. 280 316

    [4]

    Lee C Y, Fu L M 2017 Sensor Actuat. B:Chem. 259 677

    [5]

    Sritharan K, Strobl C J, Schneider M F, Wixforth 2006 Appl. Phys. Lett. 88 054102

    [6]

    Ai X P, Ni B Y 2017 Acta Phys. Sin. 66 234702 (in Chinese) [艾旭鹏, 倪宝玉 2017 66 234702]

    [7]

    Chen X, Zhang L 2017 Microchim. Acta 184 3639

    [8]

    De B D, Recht M I, Bhagat A A, Torres F E, Bell A G, Bruce R H 2011 Lab. Chip 11 3313

    [9]

    Lang Q, Ren Y, Hobson D, Tao Y, Hou L K, Jia Y K, Hu Q M, Liu J W, Zhao X, Jiang H Y 2016 Biomicrofluidics 10 064102

    [10]

    De L F, Soref R A, Vmm P 2017 Sci. Rep. 7 3401

    [11]

    Abbas Y, Miwa J, Zengerle R, Stetten F V 2013 Micromachines 4 80

    [12]

    Xia Q, Zhong S 2012 J. Visual-Japan 15 57

    [13]

    Luong T D, Phan V N, Nguyen N T 2011 Microfluid. Nanofluid. 10 619

    [14]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910

    [15]

    Chen X, Li T 2017 Chem. Eng. J. 313 1406

    [16]

    Huang P H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y C, Chan C Y, Huang T J 2013 Lab Chip 13 3847

    [17]

    Razmkhah M, Moosavi F, Mosavian M T H, Ahmadpour A 2018 Desalination 432 55

    [18]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

    [19]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperther. 23 105

    [20]

    Birkin P R, Offin D G, Vian C J, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [21]

    Crum L A 1984 Ultrasonics 22 215

    [22]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 60 046202]

    [23]

    Hu Y, Ge Y, Zhang D, Zheng H R, Gong X F 2009 Acta Phys. Sin. 58 4746 (in Chinese) [胡艺, 葛云, 章东, 郑海荣, 龚秀芬 2009 58 4746]

    [24]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085

    [25]

    Miller D L 1988 J. Acoust. Soc. Am. 84 1378

    [26]

    Marmottant P, Hilgenfeldt S 2003 Nature 423 153

    [27]

    Patel M V, Nanayakkara I A, Simon M G, Lee A P 2014 Lab Chip 14 3860

    [28]

    Meng L, Cai F, Jiang P, Deng Z T, Li F, Niu L L, Chen Y, Wu J R, Zheng H R 2014 Appl. Phys. Lett. 104 073701

    [29]

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306 (in Chinese) [于洁, 郭霞生, 屠娟, 章东 2015 64 094306]

    [30]

    Hashmi A, Xu J 2014 J. Lab. Auto. 19 488

    [31]

    Bertin N, Spelman T A, Combriat T, Hue H, Stphan O, Lauga E, Marmottant P 2017 Lab Chip 17 1515

    [32]

    Arden J, Deltau G, Huth V, Kringel U, Peros D, Dreshage K H 1991 J. Lumen. 48 352

  • [1] Li Wei-Jian, Zhou Xiao-Yan, Lu Hang-Jun. Abnormal blockage of water flow in valveless nanopumps. Acta Physica Sinica, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing. Advances in dry low-temperature scanning probe microscopy system development. Acta Physica Sinica, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] Zhang Mei-Mei, Wu Yi-Yun, Yu Jie, Tu Juan, Zhang Dong. Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles. Acta Physica Sinica, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] Wang Yu, Zhang Hui-Min, Qin Huan. Biomedical microwave-induced thermoacoustic imaging. Acta Physica Sinica, 2023, 72(20): 204301. doi: 10.7498/aps.72.20230732
    [5] Zhang Ya-Jing, Wang Ming-Hao, Lei Zhao-Kang, Shen Wen-Jie, Ma Yan-Qiang, Mo Run-Yang. Acoustic scattering properties of multilayer membrane structured magnetic microbubbles. Acta Physica Sinica, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [6] Wu Xue-You, Liang Jin-Fu. Translation and nonspherical oscillation of single bubble in ultrasound field. Acta Physica Sinica, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [7] Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang. Nonlinear acoustic characteristics of multilayer magnetic microbubbles. Acta Physica Sinica, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [8] Shi Hui-Min, Hu Jing, Wang Cheng-Hui, Feng Fei-Long, Mo Run-Yang. Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field. Acta Physica Sinica, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [9] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [10] Liu Zhen-Li, Song Liang-Hua, Bai Liang, Xu Kai-Liang, Ta De-An. Vibro-acoustic stimulating ultrasonic guided waves in long bone. Acta Physica Sinica, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [11] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [12] Yu Jie, Guo Xia-Sheng, Tu Juan, Zhang Dong. Mecanism and applications of the nonlinear dynamic response to ultrasound contrast agent microbubbles. Acta Physica Sinica, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [13] Yin Jie, Tao Chao, Liu Xiao-Jun. Multi-parameter photoacoustic imaging and its application in biomedicine. Acta Physica Sinica, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [14] Hu Ge-Li, Ni Zhi-Peng, Wang Qiu-Liang. A target field method for designing cylindrical z-gradient coil combined with vibration control. Acta Physica Sinica, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [15] Nan Yi-Bing, Tang Yi, Zhang Li-Jun, Chang Yue-E, Chen Ting-Ai. A sectioned method to correct spectral imaging data degraded by satellite vibrations. Acta Physica Sinica, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [16] Zhang Fu-Weng, Wang Li, Liu Chuan-Ping, Wu Ping. The rising motion of grains in a vibrating pipe. Acta Physica Sinica, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [17] Tang Qiu-Yan, Tang Yi, Cao Wei-Liang, Wang Jing, Nan Yi-Bing, Ni Guo-Qiang. Simulation of imaging spectrometers degraded by satellite vibrations. Acta Physica Sinica, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [18] Feng Hai-Ran, Li Peng, Zheng Yu-Jun, Ding Shi-Liang. Dynamical entanglement of vibrations in the linear triatomic molecule by the algebraic approach. Acta Physica Sinica, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [19] Zhao Yong-Zhi, Jiang Mao-Qiang, Zheng Jin-Yang. Discrete element simulation of the segregation in Brazil nut problem. Acta Physica Sinica, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [20] Jiang Ze-Hui, Lu Kun-Quan, Hou Mei-Ying, Chen Wei, Che n Xiang-Jun. Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
Metrics
  • Abstract views:  6980
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2018
  • Accepted Date:  12 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map