Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers

Liu Ya-Kun Wang Xiao-Lin Su Rong-Tao Ma Peng-Fei Zhang Han-Wei Zhou Pu Si Lei

Citation:

Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers

Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Stimulated Brillouin scattering (SBS) currently limits the power scaling of narrow-linewidth amplifiers. To date, several techniques have been employed to suppress SBS. Within these SBS suppressing techniques, the phase modulation technique is a preferable approach to obtaining kilowatt-level narrow-linewidth laser sources. In this manuscript, we numerically investigate the influence of phase modulation signals on linewidth and SBS threshold, and discuss how to choose an appropriate modulation signal for suppressing SBS with less linewidth broadening. Three types of signals are studied, including sinusoidal signal, white noise signal (WNS), and pseudo-random binary sequence signal (PRBS). Signal parameters such as modulation frequency and modulation depth are also optimized. It is found that the linewidth increases linearly with the modulation frequency, and the linewidth is largest for WNS modulation for the same modulation frequency. Specially, the linewidth is approximate to the modulation frequency for PRBS modulation. In the case of sinusoidal modulation, the spectra exhibit a series of discrete sidebands at integer multiples of the modulation frequency while the spectral power density is almost continuous for WNS modulation. In the case of PRBS modulation, the spectra contain periodic features that are distributed as a function of modulation frequency and pattern length. The SBS threshold grows to a maximum at~100 MHz modulation frequency for the case of sinusoidal signal modulation, which can be further increased by increasing the modulation depth. The SBS threshold can be further increased by implementing the cascade sinusoidal signal modulation. When WNS modulation is employed, the SBS threshold increases almost linearly with the modulation frequency and has an S-shaped increase with the modulation depth. For the PRBS modulation, the pattern length has an optimal value for SBS suppressing:the SBS threshold increases almost linearly below a frequency, but keeps stable above that frequency. The PRBSs with longer pattern lengths tend to suppress SBS more effectively in higher modulation frequency regime than those with the shorter ones. In the commonly used 1-2 GHz frequency regimes, the PRBS with a pattern length of 7 provides the best SBS mitigation, and the pattern length should be longer when the frequency is higher than 2 GHz. It should also be noted that the SBS threshold is highest when the modulation depth is close to the half-wave voltage (π). From the aspect of SBS suppression, the PRBS is superior to other two modulation signals, which can achieve higher SBS threshold with less linewidth broadening. The investigation can present a reference for the phase modulation signal designing in the power scaling of the narrow-linewidth fiber amplifiers.
      Corresponding author: Su Rong-Tao, surongtao@126.com;w_zt@163.com ; Si Lei, surongtao@126.com;w_zt@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505260) and the National Key Research and Development Program of China (Grant No. 2016YFB0402200).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 11

    [2]

    Andrés M V, Cruz J L, Díez A, Pérez M P, Delgado P M 2008 Laser Phys. Lett. 5 2

    [3]

    Bufetov I A, Dianov E M 2009 Laser Phys. Lett. 6 6

    [4]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [5]

    Wei S Y, Jin D C, Sun R Y, Cao Y, Hou Y B, Wang J, Liu J, Wang P (in Chinese)[魏守宇, 金东臣, 孙若愚, 曹镱, 侯玉斌, 王静, 刘江, 王璞 2016 中国激光 43 0402005]

    [6]

    Bowers M S 2015 SPIE Defense+Security, Maryland, United States, April 20-24, 2015 p0J

    [7]

    Ran Y, Tao R M, Ma P F, Wang X L, Su R T, Zhou P, Si L 2015 Appl. Opt. 54 24

    [8]

    Liao S Y, Gong M L 2007 Laser Optoelectron. Prog. 44 6 (in Chinese)[廖素英, 巩马理 2007 激光与光电子学进展 44 6]

    [9]

    Gray S 2006 In Optical Amplifiers and Their Applications Whistler, Canada, June 25, 2006 pOSuB1

    [10]

    Naderi N A, Flores A, Anderson B M, Dajani I 2016 Opt. Lett. 41 17

    [11]

    Flores A, Dajani I 2014 Conference on Lasers and Electro-Optics California, United States, June 813, 2014 p1

    [12]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [13]

    Yu C X, Shatrovoy O, Fan T Y 2016 SPIE LASE, San Francisco, United States, March 9, 2016 p972806

    [14]

    Nold J, Strecker M, Liem A, Eberhardt R, Schreiber T, Tnnermann A 2015 European Conference on Lasers and Electro-Optics Munich, Germany, June 21-25, 2015 pCJ114

    [15]

    Anderson B, Flores A, Holten R, Dajani I 2015 Opt. Express 23 27046

    [16]

    Sun Y H, Feng Y J, Li T L, Wang Y S, Ma Y, Tang C, Zhang K (in Chinese)[孙殷宏, 冯昱骏, 李腾龙, 王岩山, 马毅, 唐淳, 张凯 2015 强激光与粒子束 27 071013]

    [17]

    Naderi N A, Dajani I, Flores A 2016 Opt. Lett. 41 1018

    [18]

    Harish A V, Nilsson J 2015 Opt. Express 23 6988

    [19]

    Zeringue C, Dajani I, Naderi S, Moore G T, Robin C 2012 Opt. Express 20 21196

    [20]

    Du W B, Wang X L, Zhu J J, Zhou P, Xu X J, Shu B H 2013 High Power Laser and Particle Beams 25 598 (in Chinese)[杜文博, 王小林, 朱家健, 周朴, 许晓军, 舒博宏 2013 强激光与粒子束 25 598]

    [21]

    Jenkins R B, Sova R M, Joseph R I 2007 J. Lightwave Technol. 25 763

    [22]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A. 42 5514

    [23]

    Mungan C E, Rogers S D, Satyan N, White J O 2012 IEEE J. Quant. Electron. 48 1542

    [24]

    Tang C K, Reed G T 1995 Electron. Lett. 31 451

    [25]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photonics Technol. Lett. 13 364

    [26]

    Xie S P, Xu G L (in Chinese)[谢淑平, 许国良 2013 光学学报 33 0206003]

    [27]

    Liu Y F 2008 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[刘英繁 2008 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [28]

    Zeringue C, Dajani I, Naderi S, Moore G, Robin C 2012 Opt. Express. 20 21196

    [29]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanches F 2002 Opt. Lett. 27 1294

    [30]

    Ran Y 2015 M. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[冉阳 2015 硕士学位论文(长沙:国防科学技术大学)]

    [31]

    Hollenbeck D, Cantrell C 2009 J. Lightwave Technol. 27 2140

    [32]

    Ran Y, Su R T, Ma P F, Wang X L, Zhou P, Si L 2016 Appl. Opt. 55 3809

  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 11

    [2]

    Andrés M V, Cruz J L, Díez A, Pérez M P, Delgado P M 2008 Laser Phys. Lett. 5 2

    [3]

    Bufetov I A, Dianov E M 2009 Laser Phys. Lett. 6 6

    [4]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [5]

    Wei S Y, Jin D C, Sun R Y, Cao Y, Hou Y B, Wang J, Liu J, Wang P (in Chinese)[魏守宇, 金东臣, 孙若愚, 曹镱, 侯玉斌, 王静, 刘江, 王璞 2016 中国激光 43 0402005]

    [6]

    Bowers M S 2015 SPIE Defense+Security, Maryland, United States, April 20-24, 2015 p0J

    [7]

    Ran Y, Tao R M, Ma P F, Wang X L, Su R T, Zhou P, Si L 2015 Appl. Opt. 54 24

    [8]

    Liao S Y, Gong M L 2007 Laser Optoelectron. Prog. 44 6 (in Chinese)[廖素英, 巩马理 2007 激光与光电子学进展 44 6]

    [9]

    Gray S 2006 In Optical Amplifiers and Their Applications Whistler, Canada, June 25, 2006 pOSuB1

    [10]

    Naderi N A, Flores A, Anderson B M, Dajani I 2016 Opt. Lett. 41 17

    [11]

    Flores A, Dajani I 2014 Conference on Lasers and Electro-Optics California, United States, June 813, 2014 p1

    [12]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [13]

    Yu C X, Shatrovoy O, Fan T Y 2016 SPIE LASE, San Francisco, United States, March 9, 2016 p972806

    [14]

    Nold J, Strecker M, Liem A, Eberhardt R, Schreiber T, Tnnermann A 2015 European Conference on Lasers and Electro-Optics Munich, Germany, June 21-25, 2015 pCJ114

    [15]

    Anderson B, Flores A, Holten R, Dajani I 2015 Opt. Express 23 27046

    [16]

    Sun Y H, Feng Y J, Li T L, Wang Y S, Ma Y, Tang C, Zhang K (in Chinese)[孙殷宏, 冯昱骏, 李腾龙, 王岩山, 马毅, 唐淳, 张凯 2015 强激光与粒子束 27 071013]

    [17]

    Naderi N A, Dajani I, Flores A 2016 Opt. Lett. 41 1018

    [18]

    Harish A V, Nilsson J 2015 Opt. Express 23 6988

    [19]

    Zeringue C, Dajani I, Naderi S, Moore G T, Robin C 2012 Opt. Express 20 21196

    [20]

    Du W B, Wang X L, Zhu J J, Zhou P, Xu X J, Shu B H 2013 High Power Laser and Particle Beams 25 598 (in Chinese)[杜文博, 王小林, 朱家健, 周朴, 许晓军, 舒博宏 2013 强激光与粒子束 25 598]

    [21]

    Jenkins R B, Sova R M, Joseph R I 2007 J. Lightwave Technol. 25 763

    [22]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A. 42 5514

    [23]

    Mungan C E, Rogers S D, Satyan N, White J O 2012 IEEE J. Quant. Electron. 48 1542

    [24]

    Tang C K, Reed G T 1995 Electron. Lett. 31 451

    [25]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photonics Technol. Lett. 13 364

    [26]

    Xie S P, Xu G L (in Chinese)[谢淑平, 许国良 2013 光学学报 33 0206003]

    [27]

    Liu Y F 2008 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[刘英繁 2008 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [28]

    Zeringue C, Dajani I, Naderi S, Moore G, Robin C 2012 Opt. Express. 20 21196

    [29]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanches F 2002 Opt. Lett. 27 1294

    [30]

    Ran Y 2015 M. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[冉阳 2015 硕士学位论文(长沙:国防科学技术大学)]

    [31]

    Hollenbeck D, Cantrell C 2009 J. Lightwave Technol. 27 2140

    [32]

    Ran Y, Su R T, Ma P F, Wang X L, Zhou P, Si L 2016 Appl. Opt. 55 3809

  • [1] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [6] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [8] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] Gao Wei, Liu Sheng-Nan, Bi Ya-Feng, Hu Xiao-Bo, Pu Shao-Zhi, Zhao Hong. Flat-top Brillouin gain spectrum with a controllable bandwidth produceal from multiple-lines pump modulation in liquid-core optical fibers. Acta Physica Sinica, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [10] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] Zhang Dong, Zhang Lei, Shi Jiu-Lin, ShiJin-Wei, Gong Wen-Ping, Liu Da-He. Line width compression and temporal coherence of stimulated Brillouin scattering. Acta Physica Sinica, 2012, 61(6): 064212. doi: 10.7498/aps.61.064212
    [12] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [13] Xue Li-Fang, Zhang Qiang, Li Fang, Zhou Yan, Liu Yu-Liang. High-frequency modulation, high-power and narrow-linewidth distributed feedback fiber laser. Acta Physica Sinica, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [14] Chen Xu-Dong, Shi Jin-Wei, Liu Juan, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Amplification of stimulated Brillouin scattering by collinear laser pulse series with two orthogonal polarizations. Acta Physica Sinica, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [15] Chen Xu-Dong, Shi Jin-Wei, Ouyang Min, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Collinear amplification by dual-beam stimulated Brillouin scattering in a single optical cell. Acta Physica Sinica, 2009, 58(7): 4680-4684. doi: 10.7498/aps.58.4680
    [16] Yang Ruo-Fu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors. Acta Physica Sinica, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [17] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] Wang Sha, Chen Jun, Tong Li-Xin, Gao Qing-Song, Liu Chong, Tang Chun. Experimental and theoretical investigation of fused silica rod-fiber phase conjugator. Acta Physica Sinica, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [19] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [20] Wang Yu-Lei, Lü Zhi-Wei, He Wei-Ming, Zhang Yi. Investigation on a high energy stimulated Brillouin scattering phase-conjugate mirror. Acta Physica Sinica, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
Metrics
  • Abstract views:  7907
  • PDF Downloads:  371
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2017
  • Accepted Date:  07 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map