搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受激布里渊散射海洋激光雷达时域脉冲特性研究

贾晓红 何兴道 史久林

引用本文:
Citation:

受激布里渊散射海洋激光雷达时域脉冲特性研究

贾晓红, 何兴道, 史久林

Study on the time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong, HE Xingdao, SHI jiulin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 受激布里渊散射激光雷达探测技术具有高分辨、高信噪比、强抗干扰能力等优势,在海水温-盐-声多参数联合测量方面具有重要应用前景。受激布里渊散射是一个非线性动态过程,其发生位置、峰值强度、谱线形状等随时间而变化。本文基于分布式噪声模型对不同激光波长、脉宽及焦距的水中受激布里渊散射时域信号进行了理论模拟及分析,研究了聚焦与非聚焦两种结构产生的Stokes脉冲特性。结果表明:波长越短,Stokes散射光的峰值功率越高,在低入射能量时短脉冲获得更强的散射光,而高入射能量时,长脉冲更具优势,焦距越大,散射光峰值功率越低,脉冲保真度越好;随着入射能量的增加,非聚焦结构的Stokes散射光脉冲宽度不断增加,聚焦结构的Stokes散射光脉宽先减小后增大,且存在受温度和能量影响的最佳压缩值,低温时,Stokes脉宽在阈值能量附近具有更好的压缩效果。研究结果对提升受激布里渊散射激光雷达探测性能具有重要意义。
    Stimulated Brillouin Scattering Lidar (SBS-LiDAR) technology possesses significant advantages such as high resolution, high signal-to-noise ratio, and strong anti-interference capacity, making it highly promising for simultaneous measurements of temperature, salinity, and sound velocity in seawater. SBS is a nonlinear dynamic process characterized by temporal variations in its occurrence location, peak intensity, and spectral shape. Through numerical simulations of Stokes pulse, we can quantitatively determine the conditions for SBS generation, thereby establishing a theoretical foundation for optimizing lidar systems and enhancing their detection capabilities. Existing studies on Stokes pulses typically focus on specific experimental configurations under varying parameters, including medium properties, pump laser characteristics, and ambient environmental factors. There remains significant discrepancies in reported conclusions regarding the relationship between incident energy levels and pulse width variations, particularly in water-based environments where systematic investigations on Stokes scattering pulse characteristics are notably absent. In this study, based on a distributed noise model, we conducted theoretical simulations and analyses of the time-domain signals of SBS in water for different laser wavelengths, pulse widths, and focal lengths. We investigated the characteristics of Stokes pulses generated by both focused and non-focused configurations. The results indicate that shorter incident wavelength produces significantly higher peak power of Stokes scattered light under the same conditions. The Stokes scattered light exhibits distinct energy-dependent behavior: at low input energies, short pulses generate stronger scattered signals due to enhanced nonlinear interaction efficiency, whereas at high input energies, longer pulses exhibit superior performance by maintaining temporal coherence. The larger focal lengths result in lower peak power but better pulse fidelity. As the incident energy increases, the pulse width of Stokes scattered light in the non-focused configuration exhibits a continuous increase. In contrast, for the focused configuration, the pulse width initially decreases and then increases, exhibiting an optimal compression value influenced by temperature and energy. At lower temperatures, the Stokes pulse width exhibits superior compression performance near the threshold energy. Therefore, for short-range SBS-Lidar applications, mitigation of secondary peak interference and suppression of spectral broadening are critical technical challenges that must be systematically addressed. In low-temperature detection scenarios, dynamic attenuation control becomes essential to prevent thermal stress-induced damage to photodetectors. These findings are of great significance for enhancing the performance of SBS-LiDAR system.
  • [1]

    Shen Y R 1984 The principles of nonlinear optics

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun 12 6209

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206

    [4]

    Gonzalez-Herraez M, Song K-Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113

    [5]

    Wei W, Yi L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC), 28 June-2 July 2015 p1-3

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80

    [13]

    Hon D T 1981 Opt. Lett. 5 516

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun 89 260

    [15]

    Xu D 2008 M.S. Thesis (Hangzhou: Zhejiang University) (in Chinese) [徐德 2008 硕士学位论文 (杭州:浙江大学)]

    [16]

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) 刘照虹 2018 博士学位论文 (哈尔滨:哈尔滨工业大学)

    [17]

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878 (in Chinese) [哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明 2007 56 878]

    [18]

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 HPLPB 16 09 (in Chinese) [郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 09]

    [19]

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164 (in Chinese) [邓少永, 郭少锋, 陆启生, 程湘爱 2005 54 3164]

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410

    [21]

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263 (in Chinese) [龚华平, 吕志伟, 林殿阳, 刘松江 2007 56 5263]

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) pp407-513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 15 054024

    [27]

    Feng C, Xu X, Diels J-C 2017 Opt. Express 25 12421

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624

    [29]

    Millard R C, Seaver G 1990 Deep-Sea Res. Pt. A 37 1909

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Model. 90 29

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications pp1-190

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射.  , doi: 10.7498/aps.73.20231613
    [2] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析.  , doi: 10.7498/aps.67.20172679
    [3] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究.  , doi: 10.7498/aps.67.20180486
    [4] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩.  , doi: 10.7498/aps.63.054202
    [5] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究.  , doi: 10.7498/aps.62.015205
    [6] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究.  , doi: 10.7498/aps.62.094215
    [7] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究.  , doi: 10.7498/aps.61.115202
    [8] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进.  , doi: 10.7498/aps.61.030702
    [9] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术.  , doi: 10.7498/aps.61.110701
    [10] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法.  , doi: 10.7498/aps.60.060704
    [11] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法.  , doi: 10.7498/aps.59.1047
    [12] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响.  , doi: 10.7498/aps.57.260
    [13] 吕月兰, 吕志伟, 董永康. 利用染料片吸收控制受激布里渊散射功率限幅波形.  , doi: 10.7498/aps.56.5849
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究.  , doi: 10.7498/aps.56.878
    [15] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , doi: 10.7498/aps.55.983
    [16] 吕月兰, 董永康, 吕志伟. 受激布里渊散射光限幅输出波形控制研究.  , doi: 10.7498/aps.55.5247
    [17] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响.  , doi: 10.7498/aps.54.3164
    [18] 何伟明, 杨 珺, 吕月兰, 吕志伟. 种子场对单池受激布里渊散射脉冲波形保真的影响.  , doi: 10.7498/aps.53.468
    [19] 吕月兰, 吕志伟, 董永康. 受激布里渊散射介质CCl4中脉冲传输与功率限幅特性.  , doi: 10.7498/aps.53.2170
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究.  , doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  73
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-04

/

返回文章
返回
Baidu
map