Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chip-based controllable Ioffe-typed electrostatic mirotrap for cold molecules

Xu Xue-Yan Hou Shun-Yong Yin Jian-Ping

Citation:

Chip-based controllable Ioffe-typed electrostatic mirotrap for cold molecules

Xu Xue-Yan, Hou Shun-Yong, Yin Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Trapping particles (atoms or molecules) allows long interaction time and therefore potentially high resolution in precision measurements. Moreover, the particles in the trap are thermally isolated from the outside world and can be cooled to very low temperatures. As a result, the atomic (or molecular) traps have been widely used in many research areas. However, the molecules in these traps exhibiting zero field in the trap center undergo nonadiabatic transitions, which is the major loss of particles. The loss of atoms in this type of trap seriously hinders the generation of the first BEC (Bose-Einstein condensates). In this paper, we propose a chip-based controllable Ioffe-type electrostatic mirotrap, in which nonadabatic loss can be avoided due to the non-zero electric field. The mirotrap is composed of a pair of L-typed gold wires, which is 1 m in height and deposited on a glass substrate. The non-zero potential well originated in the microsize electrodes offers a steep gradient enable to trap low-field-seeking state polar molecules. The electric field strength in the trap center can be changed in a wide range by adjusting the applied voltage or/and the widths of the electrodes. For instance, under the conditions in the paper, the electric field strength in the trap center can be changed from 0.15 to 5.5 kV/cm. The height of the potential well is about 10 m above the chip and can also be tuned in a large range by adjusting the parameters of the electrodes. Under the conditions in the paper, the height of the potential well can be adjusted from 6.0 to 17.0 m. The electric fields of the microtrap near the surface of the chip are calculated by using a finite element software. Monte-Carlo simulations of the loading and the trapping processes are also carried out in order to justify the feasibility of our scheme. Taking ND3 molecules for example, the loading efficiency of molecules as a function of longitudinal velocity of molecular packet is studied. Our proposed surface microtrap can be used not only for integrating the molecular chips but also for producing the quantum degenerate gas near the chip surface. It offers a platform for many research fields such as precision measurements, quantum computing, surface cold collisions and cold chemistry.
      Corresponding author: Hou Shun-Yong, syhou@lps.ecnu.edu.cn
    • Funds: Project supported by the Key Foundation for Outstanding Young Scientists of Higher Education Institutions in Anhui Province, China (Grant No. gxyqZD2016286) and the National Natural Science Foundation of China (Grant Nos. 91536218, 11034002, 11274114, 11504112).
    [1]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [7]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [8]

    Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396

    [9]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [10]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001

    [11]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [12]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [15]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286

    [16]

    Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002

    [17]

    Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [18]

    van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001

    [19]

    van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408

    [20]

    Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002

    [21]

    Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003

    [22]

    Meek S A, Conrad H, Meijer G 2009 Science 324 1699

    [23]

    Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003

    [24]

    Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005

    [25]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [26]

    Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [27]

    Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228

    [28]

    Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]

    [29]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [30]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [31]

    Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901

    [32]

    Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27

    [33]

    Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670

    [34]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [35]

    Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301

    [36]

    Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [37]

    Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313

    [38]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

  • [1]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [7]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [8]

    Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396

    [9]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [10]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001

    [11]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [12]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [15]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286

    [16]

    Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002

    [17]

    Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [18]

    van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001

    [19]

    van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408

    [20]

    Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002

    [21]

    Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003

    [22]

    Meek S A, Conrad H, Meijer G 2009 Science 324 1699

    [23]

    Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003

    [24]

    Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005

    [25]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [26]

    Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [27]

    Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228

    [28]

    Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]

    [29]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [30]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [31]

    Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901

    [32]

    Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27

    [33]

    Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670

    [34]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [35]

    Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301

    [36]

    Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [37]

    Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313

    [38]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

  • [1] Jiao Yue-Chun, Bai Jing-Xu, Song Rong, Han Xiao-Xuan, Zhao Jian-Ming. Preparation of ultra-cold (36D5/2+ 6S1/2) Rydberg molecule and measurement of its permanent electric dipole moment. Acta Physica Sinica, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [2] Wang Yue-Yang, Yin Jun-Hao, Yan Kang, Lin Qin-Ning, Pang Ren-Jun, Wang Ze-Sen, Yang Tao, Yin Jian-Ping. Three-dimensional magneto-optical trapping model of CaH molecule based on multi-energy-level rate equation. Acta Physica Sinica, 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [3] Bai Su-Ying, Bai Jing-Xu, Han Xiao-Xuan, Jiao Yue-Chun, Zhao Jian-Ming. Ultra-cold long-range Rydberg-ground molecules. Acta Physica Sinica, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [6] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [7] Qin Yan, Li Sheng-Chang. Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field. Acta Physica Sinica, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [8] Li Xiao-Yun, Sun Bo-Wen, Xu Zheng-Qian, Chen Jing, Yin Ya-Ling, Yin Jian-Ping. Theoritical research on optical Stark deceleration and trapping of neutral molecular beams based on modulated optical lattices. Acta Physica Sinica, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [9] Liu Jian-Ping, Hou Shun-Yong, Wei Bin, Yin Jian-Ping. Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams. Acta Physica Sinica, 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [10] Zhao Yan-Ting, Yuan Jin-Peng, Ji Zhong-Hua, Li Zhong-Hao, Meng Teng-Fei, Liu Tao, Xiao Lian-Tuan, Jia Suo-Tang. The temperature measurement for the ultracold Cs2 molecules formed by photoassociation. Acta Physica Sinica, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [11] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [12] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] Li Guan-Qiang, Peng Ping. Effects of external field parameters on conversion from ultracold atoms to heteronuclear triatomic molecules. Acta Physica Sinica, 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [14] Lu Jun-Fa, Zhou Qi, Yin Jian-Ping, Ji Xian-Ming. A combinative triple-well optical trap for three-species cold atoms or molecules. Acta Physica Sinica, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [15] Xu Xue-Yan, Chen Hai-Bo, Yin Jian-Ping. A controllable electrostatic double-well trap for cold polar molecules. Acta Physica Sinica, 2009, 58(3): 1563-1568. doi: 10.7498/aps.58.1563
    [16] Mu Ren-Wang, Ji Xian-Ming, Yin Jian-Ping. A controllable longitudinal double-well optical dipole trap for cold atoms (or cold molecules). Acta Physica Sinica, 2006, 55(11): 5795-5802. doi: 10.7498/aps.55.5795
    [17] Ji Xian-Ming, Lu Jun-Fa, Mu Ren-Wang, Yin Jian-Ping. Array of micro-optical traps for cold atoms or cold molecules using a Damman grating. Acta Physica Sinica, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [18] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [19] Mu Ren-Wang, Li Ya-Li, Ji Xian-Ming, Yin Jian-Ping. Generation of controllable double-well optical trap for cold atoms (molecules) and its experimental studies. Acta Physica Sinica, 2006, 55(12): 6333-6341. doi: 10.7498/aps.55.6333
    [20] Ji Xian-Ming, Yin Jian-Ping. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
Metrics
  • Abstract views:  5734
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2018
  • Accepted Date:  16 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回
Baidu
map