搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚声速NH3分子束静电Stark减速的理论研究

刘建平 侯顺永 魏斌 印建平

引用本文:
Citation:

亚声速NH3分子束静电Stark减速的理论研究

刘建平, 侯顺永, 魏斌, 印建平

Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams

Liu Jian-Ping, Hou Shun-Yong, Wei Bin, Yin Jian-Ping
PDF
导出引用
  • 本文基于自行研制的第二代(180级)静电Stark减速器, 展开了对NH3的有效减速与冷却的理论研究. 首先, 计算了NH3分子在|J=1, K=1量子态的Stark分裂, 研究了不同的同步相位角下, 减速器中NH3分子的纵向相空间稳定区域; 接着, 采用Monte-Carlo方法研究了该分子在传统工作模式下的减速效果, 并讨论了该减速模式下多个参数(包括每级损失动能、分子波包末速度和相对减速效率)与同步相位角的依赖关系, 以及减速波包末速度与减速电压的关系, 研究发现: 采用传统的Stark减速模式, 当减速电压为13 kV、同步相位角0=26.08时, 即可实现NH3从280 m/s到6.7 m/s的有效减速, 对应平动动能减少了99.9%, 其波包温度由1.34 K降至80 mK; 最后, 研究了先聚束后减速模式下NH3分子的减速效果, 以及该减速模式下减速波包末速度与同步相位角的依赖关系, 结果表明: 当减速电压为 6.5 kV, 采用前15级电极作为聚束电极, 后165级作为减速电极时, 可将NH3分子波包的中心速度由280 m/s减至20.7 m/s, 平动动能减少了99.4%, 温度由1.34 K降至1.6 mK, 与传统减速模式相比, 冷分子波包温度降低至1/50. 由此可见, 采用180级的传统Stark减速器完全可以实现具有较低Stark势能的NH3分子的有效减速与冷却, 并获得温度约为1 mK的冷分子波包, 为进一步的实验研究提供了可靠的理论依据.
    In this paper, we investigate theoretically the Stark deceleration and cooling of subsonic NH3 molecular beams based on our second-generation electrostatic Stark decelerator with 180 stages. Firstly, we calculate the Stark shifts of NH3 molecules in the |J=1, K=1 ightangle states and show the stable area of longitudinal phase space for different synchronous phase angles. Secondly, we study the slowing performance of NH3 molecular beams in the traditional mode, and discuss the relationships between various parameters (such as the kinetic energy loss per stage, final velocity and the slowing efficiency) and the synchronous phase angle 0, as well as the dependence of final velocity on the applied voltages. It is found that a subsonic NH3 molecular beam can be decelerated from 280 to 6.7 m/s at 0=26.08 when the high voltages applied on the electrodes are 13 kV, corresponding to a removal of 99.9% kinetic energy. The translational temperature of the molecular packets in the moving frame is significantly reduced from 1.34 K to 80 mK. Finally, we study the slowing performance of NH3 molecules and the dependence of final velocity on the synchronous phase angle in an alternate operation mode. In this mode, a synchronous phase angle 0=0 is chosen to bunch the molecules by using the first 15 stages. The remaining 165 stages are then used to slow a subsonic molecular beam at a certain synchronous phase angle. Our result shows that a molecular beam with a mean velocity of 280 m/s can be decelerated to 20.7 m/s at 0=65.4 when the voltages applied are 6.5 kV, indicating a 99.4% kinetic energy removal, and the translational temperature of the molecular packets can be reduced from 1.34 K to 1.6 mK. By comparing the results obtained from the two operational modes, the temperature of the slowed molecular packet in the alternate mode is 50 times lower than that in the traditional mode. It is shown that our second-generation 180-stage Stark decelerator can effectively produce slow and cold molecules with relatively small electric dipole moment like NH3. These monochromatic NH3 molecular beams offer a promising starting point for high resolution spectroscopy, precision measurement, cold collisions and cold chemistry. This theoretical work provides a reliable basis in our further experimental research.
      通信作者: 印建平, jpyin@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 10674047, 10804031, 10904037, 10974055, 11034002, 11274114)、国家重点基础研究发展计划(批准: 2006CB921604, 2011CB921602)、上海市基础重点项目(批准号: 07JC14017)和上海市重点学科建设项目(批准号: B408)资助的课题.
      Corresponding author: Yin Jian-Ping, jpyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674047, 10804031, 10904037, 10974055, 11034002, 11274114), the National Basic Research Program of China (Grant Nos. 2006CB921604, 2011CB921602), the Basic Key Program of Shanghai Municipality, China (Grant No. 07JC14017), and the Shanghai Leading Academic Discipline Project, China (Grant No. B408).
    [1]

    Doyle J M, Friedrich B 1999 Nature 401 749

    [2]

    Williams C J, Julienne P S 2000 Science 287 986

    [3]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [4]

    Baranov M A, Mar'enko M S, Rychkov V S, Shlyapnikov G V 2002 Phys. Rev. A 66 013606

    [5]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337

    [6]

    Hudson E R, Lewandowski H J, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004

    [7]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [10]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [11]

    Weinstein J D, deCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [13]

    Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U, Raizen M G 2008 Phys. Rev. A 77 051401

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Yin Y L, Xia Y, Yin J P 2006 Chin. Phys. Lett. 23 02737

    [16]

    Xia Y, Yin Y L, Ji X, Yin J P 2012 Chin. Phys. Lett. 29 053701

    [17]

    Yin Y L, Xia Y, Yin J P 2008 Chin. Phys. B 17 03672

    [18]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [19]

    Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. Lett. 71 2204

    [20]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101

    [21]

    van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J, Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077

    [22]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [23]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002

    [24]

    Jung S, Tiemann E, Lisdat C 2006 Phys. Rev. A 74 040701

    [25]

    Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991

    [26]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404

    [27]

    Belthem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [28]

    van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T, Meijer G 2005 Phys. Rev. Lett. 94 023004

    [29]

    Hoekstra S, Metsälä M, Zieger P C, Scharfenberg L, Gilijamse J J, Meijer G, van de Meerakker S Y T 2007 Phys. Rev. A 76 063408

    [30]

    Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [31]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [32]

    Wang Z X, Gu Z X, Deng L Z, Yin J P 2015 Chin. Phys. B 24 053701

    [33]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [34]

    Kirste M, Wang X G, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C, van de Meerakker S Y T 2012 Science 338 1060

    [35]

    von Zastrow A, Onvlee J, Vogels S N, Groenenboom G C, van der Avoird A, T van de Meerakker S Y 2014 Nature Chemistry 6 216

    [36]

    Tkáč O, Saha A K, Onvlee J, Chung-Hsin Yang, Sarma G, Bishwakarma C K, van de Meerakker S Y T, van der Avoird A, Parker D H, Orr-Ewing A J 2014 Phys. Chem. Chem. Phys. 16 477

    [37]

    Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A, Meijer G 2002 Phys. Rev. Lett. 89 093004

    [38]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [39]

    Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [40]

    Fu G B, Deng L Z, Yin J P 2008 Chin. Phys. Lett. 25 923

    [41]

    Deng L Z, Fu G B, Yin J P 2009 Chin. Phys. B18 0149

    [42]

    Deng L Z 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [邓联忠 2008 博士学位论文(上海: 华东师范大学)]

    [43]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [44]

    Hou S Y 2013 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [侯顺永 2013 博士学位论文(上海: 华东师范大学)]

    [45]

    Gordy W, Cook R 1970 Microwave molecular spectra (New York: John Wiley & Sons Inc) p187-188

    [46]

    van de Meerakker S Y T, Vanhaecke N, Meijer G 2006 Annu. Rev. Phys. Chem. 57 159

  • [1]

    Doyle J M, Friedrich B 1999 Nature 401 749

    [2]

    Williams C J, Julienne P S 2000 Science 287 986

    [3]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [4]

    Baranov M A, Mar'enko M S, Rychkov V S, Shlyapnikov G V 2002 Phys. Rev. A 66 013606

    [5]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337

    [6]

    Hudson E R, Lewandowski H J, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004

    [7]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [10]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [11]

    Weinstein J D, deCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [13]

    Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U, Raizen M G 2008 Phys. Rev. A 77 051401

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Yin Y L, Xia Y, Yin J P 2006 Chin. Phys. Lett. 23 02737

    [16]

    Xia Y, Yin Y L, Ji X, Yin J P 2012 Chin. Phys. Lett. 29 053701

    [17]

    Yin Y L, Xia Y, Yin J P 2008 Chin. Phys. B 17 03672

    [18]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [19]

    Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. Lett. 71 2204

    [20]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101

    [21]

    van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J, Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077

    [22]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [23]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002

    [24]

    Jung S, Tiemann E, Lisdat C 2006 Phys. Rev. A 74 040701

    [25]

    Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991

    [26]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404

    [27]

    Belthem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [28]

    van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T, Meijer G 2005 Phys. Rev. Lett. 94 023004

    [29]

    Hoekstra S, Metsälä M, Zieger P C, Scharfenberg L, Gilijamse J J, Meijer G, van de Meerakker S Y T 2007 Phys. Rev. A 76 063408

    [30]

    Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [31]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [32]

    Wang Z X, Gu Z X, Deng L Z, Yin J P 2015 Chin. Phys. B 24 053701

    [33]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [34]

    Kirste M, Wang X G, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C, van de Meerakker S Y T 2012 Science 338 1060

    [35]

    von Zastrow A, Onvlee J, Vogels S N, Groenenboom G C, van der Avoird A, T van de Meerakker S Y 2014 Nature Chemistry 6 216

    [36]

    Tkáč O, Saha A K, Onvlee J, Chung-Hsin Yang, Sarma G, Bishwakarma C K, van de Meerakker S Y T, van der Avoird A, Parker D H, Orr-Ewing A J 2014 Phys. Chem. Chem. Phys. 16 477

    [37]

    Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A, Meijer G 2002 Phys. Rev. Lett. 89 093004

    [38]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [39]

    Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [40]

    Fu G B, Deng L Z, Yin J P 2008 Chin. Phys. Lett. 25 923

    [41]

    Deng L Z, Fu G B, Yin J P 2009 Chin. Phys. B18 0149

    [42]

    Deng L Z 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [邓联忠 2008 博士学位论文(上海: 华东师范大学)]

    [43]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [44]

    Hou S Y 2013 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [侯顺永 2013 博士学位论文(上海: 华东师范大学)]

    [45]

    Gordy W, Cook R 1970 Microwave molecular spectra (New York: John Wiley & Sons Inc) p187-188

    [46]

    van de Meerakker S Y T, Vanhaecke N, Meijer G 2006 Annu. Rev. Phys. Chem. 57 159

  • [1] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型.  , 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [2] 陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海. 刚性对称陀螺分子Stark效应的精确解.  , 2021, 70(18): 180301. doi: 10.7498/aps.70.20210214
    [3] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子.  , 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究.  , 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] 鹿博, 王大军. 超冷极性分子.  , 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [6] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术.  , 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [7] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化.  , 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [8] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱.  , 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [9] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究.  , 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [10] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [11] 李冠强, 彭娉. 外场参数对超冷原子向异核三原子分子转化的影响.  , 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [12] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案.  , 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [13] 范永胜, 陈旭, 周维, 史顺平, 李勇. 分子动力学模拟压水反应堆中联氨对水的影响.  , 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
    [14] 许雪艳, 陈海波, 印建平. 一种实现冷分子囚禁的可控制静电双阱方案.  , 2009, 58(3): 1563-1568. doi: 10.7498/aps.58.1563
    [15] 沐仁旺, 纪宪明, 印建平. 一种实现冷原子(或冷分子)囚禁的可控制纵向光学双阱.  , 2006, 55(11): 5795-5802. doi: 10.7498/aps.55.5795
    [16] 纪宪明, 陆俊法, 沐仁旺, 印建平. 采用Damman光栅实现冷原子或冷分子囚禁的光阱阵列.  , 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [17] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱.  , 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [18] 沐仁旺, 李雅丽, 纪宪明, 印建平. 实现冷原子(冷分子)囚禁的可控制光学双阱的产生及其实验研究.  , 2006, 55(12): 6333-6341. doi: 10.7498/aps.55.6333
    [19] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱.  , 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [20] 解笑湘, J. BIESNER, K. H. WELGE. 氨分子在000和201带的选择光离解.  , 1988, 37(8): 1260-1266. doi: 10.7498/aps.37.1260
计量
  • 文章访问数:  5294
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-04
  • 修回日期:  2015-05-15
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map