Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons

Chen Hao Zhang Xiao-Xia Wang Hong Ji Yue-Hua

Citation:

Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons

Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a two-dimensional material with single-layer carbon atoms, the absorptivity of graphene is only about 2.3% in visible and near-infrared region, which restricts its applications in photoelectric detection, modulation and solar cells. A way to enhance the graphene absorption in this wavelength region is to combine graphene with grating nanostructure. The grating nanostructure can generate strong near-field localization by magnetic polaritons (MPs). However, the existing structures based on MPs are facing some problems, such as sensitivity to the polarization direction of the incoming wave and difficulty in processing the deep grating. Moreover, the modulation effect of the hybrid nanostructure based on MPs combining graphene with nano-grating has not been studied. In this work, a hybrid two-dimensional shallow grating nanostructure is proposed to modulate the absorptivity of graphene based on MPs. The finite element simulation is conducted to calculate the absorptive properties. The equivalent circuit model is used to predict the resonance conditions. The current and field distributions further confirm the excitation of magnetic resonance. The influences of structural parameters and the chemical potential on absorption property are studied. The results show that the magnetic polaritons derived from the hybrid two-dimensional shallow grating structure can obviously improve the absorption of graphene in the near-infrared region. Under the specific structure, the overall absorptivity of the structure is 85%, and the absorptivity of graphene in the structure is 55%, which is over 24 times higher than that of free-standing monolayer graphene. The absorption spectra of the hybrid grating nanostructure for different geometric parameters are calculated. The results show that the absorption peak presents an obvious blue-shift as the thickness of the dielectric layer, the grating period or the width of the silver nanoparticles decrease. Numerical simulation results show that by adjusting the chemical potential of graphene, the overall absorptivity of the structure can be tuned dynamically. The reflection modulation depths of hybrid two-dimensional nanostructure under different structural parameters are calculated. By controlling the chemical potential of graphene in a range from 0.1 eV to 1 eV, the reflection modulation depths of 54.8% (1040 nm), 50.3% (890 nm) and 46.8% (750 nm) are obtained, respectively. Compared with the existing structures based on MPs, the present structure is insensitive to the incidence and polarization direction of the incident electromagnetic wave due to the symmetry in two-dimensional directions. Considering the design of shallow silver grating, the structure is easier to implement in the process. The research results provide good theoretical reference for graphene-based photoelectric detection and modulation.
      Corresponding author: Zhang Xiao-Xia, xxzhang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61435010) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61421002).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R 2009 Rev. Mod. Phys. 81 109

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [5]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [6]

    Bao Q, Loh K P 2012 ACS Nano 6 3677

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R 2008 Science 320 1308

    [8]

    Hong B H 2009 Nature 457 706

    [9]

    Liu W Z, Wang W, Xu H Y, Li X H, Yang L, Ma J G, Liu Y C 2015 Appl. Phys. Lett. 8 095202

    [10]

    Horng J, Chen C F, Geng B S, Girit C, et al. 2012 Phys. Rev. B: Condens. Matter 83 165113

    [11]

    Li E P, Chu H S, Wu L, Koh W S 2010 Opt. Express 18 14395

    [12]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101(in Chinese) [张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨 2016 65 018101]

    [13]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [14]

    Ju L, Geng B, Horng J, Girit, Martin M 2011 Nature Nanotech. 6 630

    [15]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [16]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q 2013 Nano Lett. 13 3698

    [17]

    Marco F, Alexander U, Andreas P, Govinda L, Karl U, Hermann D, Pavel K, Asron M A, Werner S, Gottfried S, Thomas M 2012 Nano Lett. 12 2773

    [18]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501(in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 65 138501]

    [19]

    Maillard M, Huang P, Brus L 2003 Nano Lett. 3 1611

    [20]

    Zhao B, Wang L, Shuai Y, Zhang Z M 2013 Int. J. Heat Mass Transfer 67 637

    [21]

    Zhao J M, Zhang Z M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 49

    [22]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P, Halas N J 2012 ACS Nano 6 10222

    [23]

    Cai Y J, Zhu J F, Liu Q H 2015 Appl. Phys. Lett. 106 043105

    [24]

    Cai Y J, Zhu J F, Liu Q H, Lin T, Zhou J Y, Ye L F, Cai Z P 2015 Opt. Express 23 32318

    [25]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 1176

    [26]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [27]

    Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 135 81

    [28]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [29]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [30]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [31]

    Vakil A, Engheta N 2011 Science 332 1291

    [32]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B: Condens. Matter 79 125104

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R 2009 Rev. Mod. Phys. 81 109

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [5]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [6]

    Bao Q, Loh K P 2012 ACS Nano 6 3677

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R 2008 Science 320 1308

    [8]

    Hong B H 2009 Nature 457 706

    [9]

    Liu W Z, Wang W, Xu H Y, Li X H, Yang L, Ma J G, Liu Y C 2015 Appl. Phys. Lett. 8 095202

    [10]

    Horng J, Chen C F, Geng B S, Girit C, et al. 2012 Phys. Rev. B: Condens. Matter 83 165113

    [11]

    Li E P, Chu H S, Wu L, Koh W S 2010 Opt. Express 18 14395

    [12]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101(in Chinese) [张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨 2016 65 018101]

    [13]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [14]

    Ju L, Geng B, Horng J, Girit, Martin M 2011 Nature Nanotech. 6 630

    [15]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [16]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q 2013 Nano Lett. 13 3698

    [17]

    Marco F, Alexander U, Andreas P, Govinda L, Karl U, Hermann D, Pavel K, Asron M A, Werner S, Gottfried S, Thomas M 2012 Nano Lett. 12 2773

    [18]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501(in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 65 138501]

    [19]

    Maillard M, Huang P, Brus L 2003 Nano Lett. 3 1611

    [20]

    Zhao B, Wang L, Shuai Y, Zhang Z M 2013 Int. J. Heat Mass Transfer 67 637

    [21]

    Zhao J M, Zhang Z M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 49

    [22]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P, Halas N J 2012 ACS Nano 6 10222

    [23]

    Cai Y J, Zhu J F, Liu Q H 2015 Appl. Phys. Lett. 106 043105

    [24]

    Cai Y J, Zhu J F, Liu Q H, Lin T, Zhou J Y, Ye L F, Cai Z P 2015 Opt. Express 23 32318

    [25]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 1176

    [26]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [27]

    Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 135 81

    [28]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [29]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [30]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [31]

    Vakil A, Engheta N 2011 Science 332 1291

    [32]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B: Condens. Matter 79 125104

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [5] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [6] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [7] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [8] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [10] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [11] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [12] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [13] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [14] Bi Wei-Hong, Wang Yuan-Yuan, Fu Guang-Wei, Wang Xiao-Yu, Li Cai-Li. Study on the electro-optic modulation properties of graphene-coated hollow optical fiber. Acta Physica Sinica, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [15] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [16] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [20] Guo Dong-Ming, Yang Ling-Zhen, Wang An-Bang, Zhang Xiu-Juan, Wang Yun-Cai. Modulation of feedback strength to enhance the security of chaos optical communication system. Acta Physica Sinica, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
Metrics
  • Abstract views:  7992
  • PDF Downloads:  245
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2018
  • Accepted Date:  09 March 2018
  • Published Online:  05 June 2018

/

返回文章
返回
Baidu
map