-
Yttrium iron garnet (YIG) film is a kind of magnetic film and has been investigated extensively because of its excellent magnetic properties and various applications in different fields. Generally, the easy-axis of the film is in-plane and can be changed from in-plane to out-of-plane by introducing some Bi3+ ions into the dodecahedral sites as it has big uniaxial anisotropy, which will be very important in magnetic bubble memories, magneto-optical devices and the new development of spin-wave logic devices. In comparison with many other preparation techniques, the liquid phase epitaxy (LPE) has been consider as a potential method of realizing perpendicular magnetization film due to its big growth-induced anisotropy. However, the LPE technique has more stringent requirements for lattice match between garnet film and gadolinium gallium garnet (GGG) substrate, especially in the growth of thick film. The lattice match is the key factor in LPE growth if the aim of experiment is to achieve a perfect quality and thick film. In most of experiments, there always exists the lattice mismatch between the film and substrate. Owing to the film and substrate have different chemical compositions, their lattice mismatch stress is unavoidable. The purpose of this paper is to investigate the effect of the stress on the anisotropy and then the magnetic domain of (BiTm)3(GaFe)5O12 single crystal film. In our experiment, the monocrystalline (BiTm)3(GaFe)5O12 films are prepared on (111)-oriented GGG substrates by LPE technique and the effect of lattice mismatch stress on the uniaxial anisotropy and magnetic domain are investigated. It is found that the lattice constant of the film is mainly determined by the content of Bi3+ in the film composition. and the increase of Bi3+ content leads to the increase of the film lattice constant, which affects the lattice mismatch stress between film and substrate. The lattice mismatch stress can adjust the perpendicular anisotropy of film which is the main reason for the domain changes. As the mismatch stress changes from tensile stress to compressive stress gradually, the magnetic bubble domain is transformed first into maze domain, and then into the partially striped domain, finally into the completely striped domain. The mismatch tensile stress is an effective method to enhance perpendicular anisotropy, when the growth-induced perpendicular anisotropy is not large enough. The bubble domain can only appear on the film with large tensile stress. The domain size is closely related to the stress. The domain width becomes wider as the mismatch stress becomes larger and it has the smallest domain size as the stress is minimum. These experimental results are very useful in controlling the uniaxial anisotropy and magnetic domain based on the change of the lattice mismatch stress in the growth process.
[1] Bobeck A H 1967 Bell Syst. Tech. J. 46 1901
[2] Konishi S 1983 IEEE Trans. Magn. MAG-19 1938
[3] Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156
[4] Paroli P 1984 Thin Solid Films 114 187
[5] Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575
[6] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309
[7] Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643
[8] Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213
[9] Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204
[10] Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210
[11] Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23
[12] Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590
[13] Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302
[14] Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 38 1704]
[15] Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375
[16] Hansen P 1974 J. Appl. Phys. 45 3638
[17] Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63
[18] Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127
[19] Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519
[20] Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]
[21] Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215
[22] Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340
[23] Anastassakis E 1990 J. Appl. Phys. 68 4561
[24] Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512
[25] Bateman T B 1966 J. Appl. Phys. 37 2194
[26] Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80
[27] Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81
[28] Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334
[29] Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238
[30] Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243
[31] Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052
[32] Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099
[33] Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804
[34] Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058
[35] Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832
[36] Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836
[37] Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 62 167503]
[38] Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 40 653]
[39] Hansen P, Witter K 1985 J. Appl. Phys. 58 454
[40] Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002
[41] Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717
-
[1] Bobeck A H 1967 Bell Syst. Tech. J. 46 1901
[2] Konishi S 1983 IEEE Trans. Magn. MAG-19 1938
[3] Davies J E, Giess E A 1975 J. Mater. Sci. 10 2156
[4] Paroli P 1984 Thin Solid Films 114 187
[5] Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575
[6] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G 2016 Nat. Mater. 16 309
[7] Rosencwaig A, Tabor W J 1971 J. Appl. Phys. 42 1643
[8] Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213
[9] Liu X, Sasaki Y, Furdyna J K 2003 Phys. Rev. B 67 205204
[10] Stone P R, Dreher L, Beeman J W, Yu K M, Brandt M S, Dubon O D 2010 Phys. Rev. B 81 205210
[11] Dho J, Hur N H 2007 J. Magn. Magn. Mater. 318 23
[12] Jung C U, Yamada H, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 84 2590
[13] Blank S L, Nielsen J W 1972 J. Cryst. Growth 17 302
[14] Tian L G, Liu X L, Xu S S, Han X X 1989 Acta Phys. Sin. 38 1704(in Chinese) [田亮光, 刘湘林, 许顺生, 韩效溪 1989 38 1704]
[15] Hansen P, Witter K, Tolksdorf W 1983 Phys. Rev. B 27 4375
[16] Hansen P 1974 J. Appl. Phys. 45 3638
[17] Kubota M, Shibuya K, Tokunaga Y, Kagawa F, Tsukazaki A, Tokura Y, Kawasaki M 2013 J. Magn. Magn. Mater. 339 63
[18] Guduru P R, Chason E, Freund L B 2003 J. Mech. Phys. Solids 51 2127
[19] Wagner G, Gottschalcrt V, Rhan H, Paufler P 2010 Phys. Stat. Sol. 112 519
[20] Yang Q H, Zhang H W, Liu Y L, Weng Q Y, Ji H 2008 The Fourth National Congress and academic conference of China Crystal Society Mount Huangshan, China 2008, p274 (in Chinese) [杨青慧, 张怀武, 刘颖力, 文岐业, 姬洪 2008中国晶体学会全国会员代表大会暨学术会议中国黄山, 2008, 第274页]
[21] Luchechko A P, Syvorotka I I, Zakharko Y, Syvorotka I M 2013 Solid State Phenom. 200 215
[22] Navarro-Quezada A, Rodrguez A G, Vidal M A, Navarro-Contreras H 2006 J. Cryst. Growth 291 340
[23] Anastassakis E 1990 J. Appl. Phys. 68 4561
[24] Mermoux M, Crisci A, Baillet F, Destefanis V, Rouchon D, Papon A M, Hartmann J M 2010 J. Appl. Phys. 107 013512
[25] Bateman T B 1966 J. Appl. Phys. 37 2194
[26] Makino H, Hibiya T, Matsumi K 1974 AIP Conf. Proc. 18 80
[27] Randles M M 1978 Liquid Phase Epitaxial Growth of Magnetic Garnets (Vol. 1) (Heidelberg: Springer-Verlag) pp80-81
[28] Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley Sons Ltd) pp333-334
[29] Tkachuk S, Fratello V J, Krafft C, Lang G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 4238
[30] Heinz D M, Besser P J, Owens J M, Mee J E, Pulliam G R 1971 J. Appl. Phys. 42 1243
[31] Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052
[32] Hansen P, Tolksdorf W, Witter K, Robertson J 1984 IEEE Trans. Magn. MAG-20 1099
[33] Wen D, Zhang H, Hui X, Wang Y, Zhong Z, Bai F 2014 IEEE Trans. Magn. 50 2801804
[34] Hansen P, Klages C, Witter K 1988 J. Appl. Phys. 63 2058
[35] Nistor I, Krafft C, Rojas R, Mayergoyz I D 2004 IEEE Trans. Magn. 40 2832
[36] Wen D, Zhang H, Yang X, L Q, Bai F 2017 J. Alloys Compd. 690 836
[37] Zhu J, Su Y C, Pan J, Feng G L 2013 Acta Phys. Sin. 62 167503(in Chinese) [朱洁, 苏垣昌, 潘靖, 封国林 2013 62 167503]
[38] Shen D F, Du T D, Wang L J, Zhang W Z 1991 Acta Phys. Sin. 40 653(in Chinese) [沈德芳, 杜腾达, 王丽娟, 张伟珠 1991 40 653]
[39] Hansen P, Witter K 1985 J. Appl. Phys. 58 454
[40] Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M, Tokura Y 2012 Appl. Phys. Express 5 103002
[41] Mee J E, Pulliam G R, Archer J L, Besser P J 1969 IEEE Trans. Magn. Mag-5 717
Catalog
Metrics
- Abstract views: 6348
- PDF Downloads: 164
- Cited By: 0