Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process

Xiao Jun-Ru Liu Zhong-Wu Lou Hua-Shan Zhan Hui-Xiong

Citation:

Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process

Xiao Jun-Ru, Liu Zhong-Wu, Lou Hua-Shan, Zhan Hui-Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Considerable quantities of Nd-Fe-B magnet wastes are produced every year worldwide. Some Nd-Fe-B magnet wastes in the bulk form, produced during manufacturing, have low coercivity and cannot meet the requirements for applications. Finding an effective way to reuse those wastes by improving the coercivity, without powdering or reproducing process, becomes very important for saving energy and raw materials in manufacture. In this work, the grain boundary diffusion process is carried out on waste Nd-Fe-B sintered magnets by using Pr70Cu30 as a diffusion medium. The effects of diffusion temperature, diffusion time, and annealing time on the magnetic properties of the magnets are investigated. It is found that the coercivity increases when the diffusion temperature increases from 500 to 800℃, the diffusion time increases from 1 to 3 h, or the annealing time increases from 1 to 3 h. By comparing the diffused sample with the simply heat treated sample, we find that the coercivity enhancement by grain boundary diffusion process indeed results from the infiltration of Pr and Cu elements. The coercivity of the magnet increases by 51.9%, from 7.88 kOe (1 Oe=79.5775 A/m) to 11.97 kOe, after 4-hour diffusion at 800℃ followed by 3-hour annealing, with a negligible reduction of remanence Br, achieving a 99.8% recovery of coercivity compared with the commercial N35 magnet. It is noted that 500℃ annealing for 3 h after 800℃ diffusion only slightly increases the coercivity by 4.6%, from 11.44 kOe to 11.97 kOe, which indicates that the annealing process after Pr-Cu grain boundary diffusion may be not indispensable. Based on the microstructure analysis, the diffusion of Pr and Cu is confirmed. However, the distributions of Pr and Cu are inhomogeneous within a range of tens of microns near the surface even though the diffusion has spread throughout the magnet. The structure of main phase grains separated by the continuous grain boundary phase is formed after the grain boundary diffusion process while the core-shell structure is not observed, which suggests that the modification of the grain boundary structure is the main reason for the coercivity improvement. Cu element plays an important role in forming continuous grain boundary phase. In addition, the electrochemical corrosion test shows that higher corrosion current is obtained in the diffused magnet than in the original magnet, though the corrosion potential is improved. The reduced corrosion resistance may be related to the increased RE-rich phase content and the formation of continuous grain boundary phase. The present work is of great importance for increasing the production yield of Nd-Fe-B magnets.
      Corresponding author: Liu Zhong-Wu, zwliu@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51774146) and the Guangdong Provincial Science and Technology Program, China (Grant No. 2015B010105008).
    [1]

    Xu T 2004 Chin. Rare Earths 25 31 (in Chinese) [许涛 2004 稀土 25 31]

    [2]

    Chen Y H, Wang H Y, Pei Y C, Ren J, Wang J J 2015 ACS Sustain. Chem. Eng. 3 3167

    [3]

    Saito T, Sato H, Motegi T 2006 J. Alloys Compd. 425 145

    [4]

    Sepehri-Amin H, Ohkubo T, Zakotnik M, Prosperi D, Afiuny P, Tudor C O, Hono K 2017 J. Alloys Compd. 694 175

    [5]

    Li X T, Yue M, Liu W Q, Li X L, Yi X F, Huang X L, Zhang D T, Chen J W 2015 J. Alloys Compd. 649 656

    [6]

    Zakotnik M, Tudor C O 2015 Waste Manage. 44 48

    [7]

    Li C, Liu W Q, Yue M, Liu Y Q, Zhang D T, Zuo T Y 2014 IEEE Trans. Magn. 50 2105403

    [8]

    Kawasaki T, Itoh M, Ken-Ichi M 2003 Mater. Trans. 44 1682

    [9]

    Ma T Y, Wang X J, Liu X L, Wu C, Yan M 2015 J. Phys. D:Appl. Phys. 48 215001

    [10]

    Oono N, Sagawa M, Kasada R, Matsui H, Kimura A 2011 J. Magn. Magn. Mater. 323 297

    [11]

    Suzuki H, Satsu Y, Komuro M 2009 J. Appl. Phys. 105 07A734

    [12]

    Guo S, Zhang X F, Ding G F, Chen R J, Lee D, Yan A R 2014 J. Appl. Phys. 115 17A754

    [13]

    Watanabe N, Itakura M, Kuwano N, Li D, Suzuki S, Ken-Ich M 2007 Mater. Trans. 48 915

    [14]

    Soderžnik M, Korent M, Soderžnik K Ž, Katter M, stner K, Kobe S 2016 Acta Mater. 115 278

    [15]

    Tang M H, Bao X Q, Lu K C, Lu S, Li J H, Gao X X 2016 Scripta Mater. 117 60

    [16]

    Liang L P, Ma T Y, Pei Z, Jin J Y, Mi Y 2014 J. Magn. Magn. Mater. 355 131

    [17]

    Ji W X, Liu W Q, Yue M, Zhang D T, Zhang J X 2015 Physica B 476 147

    [18]

    Chen F G, Zhang T Q, Jing W, Zhang L T, Zhou G F 2015 Scripta Mater. 107 38

    [19]

    Akiya T, Liu J, Sepehri-Amin H, Ohkubo T, Hioki K, Hattori A, Hono K 2014 J. Appl. Phys. 115 17A766

    [20]

    Tang X, Chen R, Yin W, Wang J Z, Lee D, Yan A R 2013 Appl. Phys. Lett. 102 72409

    [21]

    Sepehri-Amin H, Liu J, Ohkubo T, Hioki K, Hattori A, Hono K 2013 Scripta Mater. 69 647

    [22]

    Sepehri-Amin H, Ohkubo T, Nagashima S, Yano M, Shoji T, Kato A, Schrefl T, Hono K 2013 Acta Mater. 61 6622

    [23]

    Sepehri-Amin H, Ohkubo T, Nishiuchi T, Hirosawa S, Hono K 2010 Scripta Mater. 63 1124

    [24]

    Kronmller H, Durst K D, Sagawa M 1988 J. Magn. Magn. Mater. 74 291

    [25]

    Hono K, Sepehri-Amin H 2012 Scripta Mater. 67 530

    [26]

    Liu S, Kang N, Yu J, Kwon H, Lee J 2016 J. Magn. 21 51

    [27]

    Li W F, Ohkubo T, Akiya T, Kato H Hono K 2009 J. Mater. Res. 24 413

    [28]

    Sepehri-Amin H, Liu L H, Ohkubo T, Yano M, Shoji T, Kato A, Schrefl T, Hono K 2015 Acta Mater. 99 297

    [29]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H 1986 J. Appl. Phys. 59 873

    [30]

    Haynes W M 2016 CRC Handbook of Chemistry and Physic (96th Ed.) (BOCA Raton:CRC Press) pp5-81-5-83

    [31]

    Cui X G, Yan M, Ma T Y, Yu L Q 2008 Physica B 403 4182

    [32]

    Sun C, Liu W Q, Sun H, Yue M, Yi X F, Chen J W 2012 J. Mater. Sci. Technol. 28 927

    [33]

    He Q J, Li W 2001 Met. Funct. Mater. 8 8 (in Chinese) [贺琦军, 李卫 2001 金属功能材料 8 8]

    [34]

    Liu W Q, Yue M, Zhang J X, Wang G P, Li T 2007 Rare Metal. Mat. Eng. 36 1066 (in Chinese) [刘卫强, 岳明, 张久兴, 王公平, 李涛 2007 稀有金属材料与工程 36 1066]

    [35]

    Isotahdon E, Huttunen-Saarivirta E, Kuokkala V T, Paju M 2012 Mater. Chem. Phys. 135 762

  • [1]

    Xu T 2004 Chin. Rare Earths 25 31 (in Chinese) [许涛 2004 稀土 25 31]

    [2]

    Chen Y H, Wang H Y, Pei Y C, Ren J, Wang J J 2015 ACS Sustain. Chem. Eng. 3 3167

    [3]

    Saito T, Sato H, Motegi T 2006 J. Alloys Compd. 425 145

    [4]

    Sepehri-Amin H, Ohkubo T, Zakotnik M, Prosperi D, Afiuny P, Tudor C O, Hono K 2017 J. Alloys Compd. 694 175

    [5]

    Li X T, Yue M, Liu W Q, Li X L, Yi X F, Huang X L, Zhang D T, Chen J W 2015 J. Alloys Compd. 649 656

    [6]

    Zakotnik M, Tudor C O 2015 Waste Manage. 44 48

    [7]

    Li C, Liu W Q, Yue M, Liu Y Q, Zhang D T, Zuo T Y 2014 IEEE Trans. Magn. 50 2105403

    [8]

    Kawasaki T, Itoh M, Ken-Ichi M 2003 Mater. Trans. 44 1682

    [9]

    Ma T Y, Wang X J, Liu X L, Wu C, Yan M 2015 J. Phys. D:Appl. Phys. 48 215001

    [10]

    Oono N, Sagawa M, Kasada R, Matsui H, Kimura A 2011 J. Magn. Magn. Mater. 323 297

    [11]

    Suzuki H, Satsu Y, Komuro M 2009 J. Appl. Phys. 105 07A734

    [12]

    Guo S, Zhang X F, Ding G F, Chen R J, Lee D, Yan A R 2014 J. Appl. Phys. 115 17A754

    [13]

    Watanabe N, Itakura M, Kuwano N, Li D, Suzuki S, Ken-Ich M 2007 Mater. Trans. 48 915

    [14]

    Soderžnik M, Korent M, Soderžnik K Ž, Katter M, stner K, Kobe S 2016 Acta Mater. 115 278

    [15]

    Tang M H, Bao X Q, Lu K C, Lu S, Li J H, Gao X X 2016 Scripta Mater. 117 60

    [16]

    Liang L P, Ma T Y, Pei Z, Jin J Y, Mi Y 2014 J. Magn. Magn. Mater. 355 131

    [17]

    Ji W X, Liu W Q, Yue M, Zhang D T, Zhang J X 2015 Physica B 476 147

    [18]

    Chen F G, Zhang T Q, Jing W, Zhang L T, Zhou G F 2015 Scripta Mater. 107 38

    [19]

    Akiya T, Liu J, Sepehri-Amin H, Ohkubo T, Hioki K, Hattori A, Hono K 2014 J. Appl. Phys. 115 17A766

    [20]

    Tang X, Chen R, Yin W, Wang J Z, Lee D, Yan A R 2013 Appl. Phys. Lett. 102 72409

    [21]

    Sepehri-Amin H, Liu J, Ohkubo T, Hioki K, Hattori A, Hono K 2013 Scripta Mater. 69 647

    [22]

    Sepehri-Amin H, Ohkubo T, Nagashima S, Yano M, Shoji T, Kato A, Schrefl T, Hono K 2013 Acta Mater. 61 6622

    [23]

    Sepehri-Amin H, Ohkubo T, Nishiuchi T, Hirosawa S, Hono K 2010 Scripta Mater. 63 1124

    [24]

    Kronmller H, Durst K D, Sagawa M 1988 J. Magn. Magn. Mater. 74 291

    [25]

    Hono K, Sepehri-Amin H 2012 Scripta Mater. 67 530

    [26]

    Liu S, Kang N, Yu J, Kwon H, Lee J 2016 J. Magn. 21 51

    [27]

    Li W F, Ohkubo T, Akiya T, Kato H Hono K 2009 J. Mater. Res. 24 413

    [28]

    Sepehri-Amin H, Liu L H, Ohkubo T, Yano M, Shoji T, Kato A, Schrefl T, Hono K 2015 Acta Mater. 99 297

    [29]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H 1986 J. Appl. Phys. 59 873

    [30]

    Haynes W M 2016 CRC Handbook of Chemistry and Physic (96th Ed.) (BOCA Raton:CRC Press) pp5-81-5-83

    [31]

    Cui X G, Yan M, Ma T Y, Yu L Q 2008 Physica B 403 4182

    [32]

    Sun C, Liu W Q, Sun H, Yue M, Yi X F, Chen J W 2012 J. Mater. Sci. Technol. 28 927

    [33]

    He Q J, Li W 2001 Met. Funct. Mater. 8 8 (in Chinese) [贺琦军, 李卫 2001 金属功能材料 8 8]

    [34]

    Liu W Q, Yue M, Zhang J X, Wang G P, Li T 2007 Rare Metal. Mat. Eng. 36 1066 (in Chinese) [刘卫强, 岳明, 张久兴, 王公平, 李涛 2007 稀有金属材料与工程 36 1066]

    [35]

    Isotahdon E, Huttunen-Saarivirta E, Kuokkala V T, Paju M 2012 Mater. Chem. Phys. 135 762

  • [1] Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo. Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. Acta Physica Sinica, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] Zhang Jia-Teng, Xu Ji-Yuan, Jin Jia-Ying, Meng Rui-Yang, Dong Sheng-Zhi. Effect of Pr80Cu20 grain boundary addition on microstructure and magnetic properties of (Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05 magnet. Acta Physica Sinica, 2022, 71(16): 167502. doi: 10.7498/aps.71.20220406
    [3] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen. Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets. Acta Physica Sinica, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [5] Hou Zhi-Peng, Su Feng, Wang Wen-Quan. High coercivity in Co79Zr18Cr3 magnet. Acta Physica Sinica, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [6] Guo Zi-Zheng, Hu Xu-Bo. Effects of stress on the hysteresis loss and coercivity of ferromagnetic film. Acta Physica Sinica, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [7] Yin Jin-Hua, Chen Xi-Fang, Zhang Shuai, Zhang Hong-Wei, Chen Jing-Lan, Jiang Hong-Wei, Wu Guang-Heng. Magnetic hardening of soft phase in nanocomposite permanent magnetic materials by exchange coupling. Acta Physica Sinica, 2010, 59(9): 6593-6598. doi: 10.7498/aps.59.6593
    [8] Xian Cheng-Wei, Zhao Guo-Ping, Zhang Qing-Xiang, Xu Jin-Song. Magnetization reversal of perpendicularly orientated Nd2Fe14B/α-Fe trilayer. Acta Physica Sinica, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [9] Qiu Xue-Jun, Zhang Yun-Peng, He Zheng-Hong, Bai Lang, Liu Guo-Lei, Wang Yue, Chen Peng, Xiong Zu-Hong. Control of coercivity of iron films deposited on porous silicon substrates. Acta Physica Sinica, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [10] Chen Xian-Feng. Effect of the second-order magnetocrystalline anisotropic constant on the magnetization reversal in R2Fe14B magnets. Acta Physica Sinica, 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [11] He Shu-Li, Zhang Hong-Wei, Rong Chuan-Bing, Chen Ren-Jie, Sun Ji-Rong, Shen Bao-Gen. Influence of grain alignment degree on the magnetic properties for single-phase nanocrystalline Pr2Fe14B magnets. Acta Physica Sinica, 2005, 54(7): 3408-3413. doi: 10.7498/aps.54.3408
    [12] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the coercivity of Fe40—45Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
    [13] Shi Hui-Gang, Si Ming-Su, Xue De-Sheng. Coercivity mechanism of segmented (A/B)m composite nanowire arrays. Acta Physica Sinica, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [14] Weng Zhen-Zhen, Feng Qian, Huang Zhi-Gao, Du You-Wei. Study on the coercivity and step effect of mixed magnetic films by micromagnetism and Monte Carlo simulation. Acta Physica Sinica, 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [15] Zhang Xiao-Yu, Chen Ya-Jie. Abnormal coercivity behaviour in the magnetic percolation region of a magnetic g ranular composite. Acta Physica Sinica, 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [16] Gao Ru-Wei, Feng Wei-Cun, Wang Biao, Chen Wei, Han Guang-Bing, Zhang Peng, Liu Han-Qiang, Li Wei, Guo Yong-Quan, Li Xiu-Mei. Effective anisotropy and coercivity in nanocomposite permanent materials. Acta Physica Sinica, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [17] Zhang Hong-Wei, Rong Chuan-Bing, Zhang Jian, Zhang Shao-Ying, Shen Bao-Gen. Simulation of magnetization behaviour in nanocrystalline Pr2Fe14B by micromagnetic finite element method. Acta Physica Sinica, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [18] Rong Chuan-Bing, Zhang Hong-Wei, Zhang Jian, Zhang Shao-Ying, Shen Bao-Gen. The study of domain-wall pinning by inhomogeneities in nanocrystalline permanent magnets. Acta Physica Sinica, 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [19] Zhang Hong-Wei, Rong Chuan-Bing, Zhang Jian, Zhang Shao-Ying, Shen Bao-Gen. Mechanism of magnetization reversal in nanocrystalline Pr8Fe87B5. Acta Physica Sinica, 2003, 52(3): 722-725. doi: 10.7498/aps.52.722
    [20] Cai Chun-Lin, Teng Jiao, Yu Guang-Hua, Zhu Feng-Wu, Lai Wu-Yan, Xian Ji-Mei. . Acta Physica Sinica, 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
Metrics
  • Abstract views:  6868
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2017
  • Accepted Date:  31 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map