搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶界添加PrCu合金对(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05磁体磁性能与微观组织的影响

张家滕 徐吉元 金佳莹 孟睿阳 董生智

引用本文:
Citation:

晶界添加PrCu合金对(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05磁体磁性能与微观组织的影响

张家滕, 徐吉元, 金佳莹, 孟睿阳, 董生智

Effect of Pr80Cu20 grain boundary addition on microstructure and magnetic properties of (Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05 magnet

Zhang Jia-Teng, Xu Ji-Yuan, Jin Jia-Ying, Meng Rui-Yang, Dong Sheng-Zhi
PDF
HTML
导出引用
  • 通过在(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05(M = Al, Ga, Zr)磁体中添加低熔点合金Pr80Cu20, 提高磁体中的Cu含量, 从而调控Co在富稀土相中的分布. 相较于原磁体, 掺PrCu磁体的剩磁保持不变, 矫顽力提升约1.3 kOe, 居里温度、剩磁温度系数和不可逆磁损均有所改善. 通过微观组织观察发现, 原磁体二级回火态晶界处同时存在贫Co相与富Co相, 但掺PrCu磁体二级回火态中, Cu和Co在晶界相中的分布均匀性明显改善, 从而有效地消除了富Co相. 由于软磁性相R2(Fe, Co)17 (R = Pr, Nd, Dy) 容易与富Co相共生, 有害于永磁性能, 富Co相的消除可能是掺PrCu磁体二级回火态矫顽力提升的重要原因.
    With the aim of increasing Cu concentration to regulate the distribution of Co elements in RE-rich phase, the low-melting-point Pr80Cu20 intergranular alloy is introduced into the (Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05 (M = Al, Ga, Zr) magnet. Comparing with the original magnet, the remanence of PrCu-doped magnet is basically unchanged, and the coercivity is increased by approximately 1.3 kOe. Simultaneously, the Curie temperature, remanence temperature coefficient and irreversible flux loss are slightly improved. Microstructural study reveals that the Co-lean phase and the Co-rich phase coexist in the grain boundary in the 2nd-annealed original magnet. However, for the PrCu-doped magnet, the uniform distribution of Cu and Co elements in the intergranular phase are evidently improved, resulting in the elimination of the Co-rich phase. Since the R2(Fe, Co)17 (R = Pr, Nd, Dy) soft magnetic phase easily coexist with the Co-rich phase and are detrimental to the coercivity, the elimination of Co-rich intergranular phase may be an important reason for the higher coercivity of the 2nd-annealed PrCu-doped magnet than that of the original magnet.
      通信作者: 董生智, dong_shengzhi@163.com
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3502900)资助的课题.
      Corresponding author: Dong Sheng-Zhi, dong_shengzhi@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3502900).
    [1]

    Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083Google Scholar

    [2]

    Yan G L, McGuiness P J, Farr J P G, Harris I R 2010 J. Alloys Compd. J. Alloys Compd. 491 L20Google Scholar

    [3]

    Mottram R S, Williams A J, Harris I R 2000 J. Magn. Magn. Mater. 217 27Google Scholar

    [4]

    Hu Z H, Lian F Z, Zhu M G, Li W 2008 J. Magn. Magn. Mater. 320 2364Google Scholar

    [5]

    Kostyuchenko N V, Tereshina I S, Gorbunoy D I, Tereshina-Chitrova E A, Rogacki K, Andreev A V, Doerr M, Politova G A, Zvezdin A K 2020 Intermetallics 124 106840Google Scholar

    [6]

    Cui X G, Yan M, Ma T Y, Luo W, Tu S J 2009 Sci. Sinter. 41 91Google Scholar

    [7]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432Google Scholar

    [8]

    Yan M, Yu L Q, Luo W, Wang W, Zhang W Y, Wen Y H 2006 J. Magn. Magn. Mater. 301 1Google Scholar

    [9]

    Li W F, Ohkubo T, Hono K 2009 Acta Mater. 57 1337Google Scholar

    [10]

    李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫 2020 69 147501Google Scholar

    Li D, Dong S Z, Li L, Xu J Y, Chen H S, Li W 2020 Acta Phys. Sin. 69 147501Google Scholar

    [11]

    Kim A S, Camp F E 1996 J. Appl. Phys. 79 5035Google Scholar

    [12]

    Pandian S, Chandrasekaran V, Markandeyulu G, Lyer K J L, Rao R 2002 J. Appl. Phys. 92 6082Google Scholar

    [13]

    Ni J J, Ma T Y, Yan M 2011 J. Magn. Magn. Mater. 323 2549Google Scholar

    [14]

    Li M, Tamura T 2021 J. Alloys Compd. 883 160915Google Scholar

    [15]

    Luo S E, Lu Y J, Zou Y R, Zhong S W, Wu Y, Yang M N 2021 J. Magn. Magn. Mater. 523 167620Google Scholar

    [16]

    张家滕, 徐吉元, 胡成林, 孟睿阳, 董生智 2022 中国稀土学报 40 235

    Zhang J T, Xu J Y, Hu C L, Meng R Y, Dong S Z. 2022 J. Chin. Rare Earth Soc. 40 235

    [17]

    胡伯平, 饶晓雷, 王亦忠 2017 稀土永磁材料(上册) (北京: 冶金工业出版社) 第197页

    Hu B P, Rao X L, Wang Y Z 2017 Rare-earth Permanent Magnet Materials (Vol. 1) (Beijing: Metallurgical Industry Press) p197 (in Chinese)

    [18]

    Kou X C, Zhao T S, R. Grössinger, de Boer F R 1992 Phys. Rev. B 46 6225Google Scholar

  • 图 1  原磁体和掺PrCu磁体二级回火态样品不同温度下的退磁曲线

    Fig. 1.  Demagnetization curves of the 2nd-annealed original-magnet and PrCu-doped magnet upon elevated temperatures.

    图 2  原磁体和掺PrCu磁体的温度稳定性对比 (a), (d) TG/DTG曲线; (b), (e) 不可逆磁损曲线; (c), (f) 剩磁温度系数

    Fig. 2.  Comparison of temperature stability of magnetic properties between original-magnet and PrCu-doped magnet: (a), (d) TG/DTG curves; (b), (e) irreversible flux loss curves; (c), (f) remanence temperature coefficient.

    图 3  (a) 原磁体烧结态、(b) 一级回火态和(c)二级回火态样品的扫描电镜背散射照片(BSE)及对应区域的能谱照片(EDS)

    Fig. 3.  SEM figure (BSE) and EDS figure of the corresponding region of original-magnet (a) as-sintered, (b) 1st-annealing and (c) 2nd-annealing.

    图 4  (a) 掺PrCu磁体烧结态、(b) 一级回火态和(c)二级回火态样品的扫描电镜背散射照片(BSE)及对应区域的能谱照片(EDS)

    Fig. 4.  SEM figure (BSE) and EDS figure of the corresponding region of PrCu-doped magnet (a) as-sintered, (b) 1st-annealing and (c) 2nd-annealing.

    图 5  原磁体透射电镜明场像照片(BF)及对应区域的元素面分布 (a) 烧结态; (b) 一级回火态; (c) 二级回火态

    Fig. 5.  Bright field image (BF) and corresponding EDX mapping of original-magnet: (a) As-sintered; (b) 1st-annealing; (c) 2nd-annealing.

    图 6  掺PrCu磁体透射电镜明场像照片(BF)及对应区域的选区电子衍射照片、元素面分布照片 (a) 烧结态; (b) 一级回火态; (c) 二级回火态

    Fig. 6.  Bright field image (BF) and corresponding Selected Area Electron Diffraction figure and EDX mapping of PrCu-doped magnet: (a) As-sintered; (b) 1st-annealing; (c) 2nd-annealing.

    表 1  原磁体和掺PrCu磁体的室温磁性能对比

    Table 1.  Comparison of magnetic properties between original-magnet and PrCu-doped magnet.

    剩磁Br/kGs矫顽力Hcj/kOe最大磁能积
    (BH)max/
    MGOe
    方形度
    Hk/Hcj/%
    原磁体烧结态11.3215.6431.0494.4
    一级回火态11.3017.2230.8895.0
    二级回火态11.3022.2431.3995.9
    掺PrCu
    磁体
    烧结态11.3116.3430.8988.9
    一级回火态11.3017.6030.5189.3
    二级回火态11.3023.5331.3695.1
    下载: 导出CSV

    表 2  掺PrCu磁体三种状态样品中不同相的元素含量

    Table 2.  Element content of different phases in three kinds of PrCu-doped magnets.

    wt.% OFeCoCuPrNdDy
    烧结态主相0.8956.18513.140.314.8715.329.28
    贫Co相4.024.631.981.1324.6856.756.83
    富Co相0.9620.5423.620.4713.6634.626.14
    一级
    回火态
    主相0.9356.7413.240.384.614.879.24
    贫Co相4.792.671.791.6125.3756.986.79
    富Co相1.1511.7216.010.5820.1544.26.19
    二级
    回火态
    主相0.8156.2313.890.34.8614.789.14
    贫Co相12.215.619.021.4723.8651.676.16
    贫Co相22.036.164.051.5225.3954.546.31
    下载: 导出CSV
    Baidu
  • [1]

    Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083Google Scholar

    [2]

    Yan G L, McGuiness P J, Farr J P G, Harris I R 2010 J. Alloys Compd. J. Alloys Compd. 491 L20Google Scholar

    [3]

    Mottram R S, Williams A J, Harris I R 2000 J. Magn. Magn. Mater. 217 27Google Scholar

    [4]

    Hu Z H, Lian F Z, Zhu M G, Li W 2008 J. Magn. Magn. Mater. 320 2364Google Scholar

    [5]

    Kostyuchenko N V, Tereshina I S, Gorbunoy D I, Tereshina-Chitrova E A, Rogacki K, Andreev A V, Doerr M, Politova G A, Zvezdin A K 2020 Intermetallics 124 106840Google Scholar

    [6]

    Cui X G, Yan M, Ma T Y, Luo W, Tu S J 2009 Sci. Sinter. 41 91Google Scholar

    [7]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432Google Scholar

    [8]

    Yan M, Yu L Q, Luo W, Wang W, Zhang W Y, Wen Y H 2006 J. Magn. Magn. Mater. 301 1Google Scholar

    [9]

    Li W F, Ohkubo T, Hono K 2009 Acta Mater. 57 1337Google Scholar

    [10]

    李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫 2020 69 147501Google Scholar

    Li D, Dong S Z, Li L, Xu J Y, Chen H S, Li W 2020 Acta Phys. Sin. 69 147501Google Scholar

    [11]

    Kim A S, Camp F E 1996 J. Appl. Phys. 79 5035Google Scholar

    [12]

    Pandian S, Chandrasekaran V, Markandeyulu G, Lyer K J L, Rao R 2002 J. Appl. Phys. 92 6082Google Scholar

    [13]

    Ni J J, Ma T Y, Yan M 2011 J. Magn. Magn. Mater. 323 2549Google Scholar

    [14]

    Li M, Tamura T 2021 J. Alloys Compd. 883 160915Google Scholar

    [15]

    Luo S E, Lu Y J, Zou Y R, Zhong S W, Wu Y, Yang M N 2021 J. Magn. Magn. Mater. 523 167620Google Scholar

    [16]

    张家滕, 徐吉元, 胡成林, 孟睿阳, 董生智 2022 中国稀土学报 40 235

    Zhang J T, Xu J Y, Hu C L, Meng R Y, Dong S Z. 2022 J. Chin. Rare Earth Soc. 40 235

    [17]

    胡伯平, 饶晓雷, 王亦忠 2017 稀土永磁材料(上册) (北京: 冶金工业出版社) 第197页

    Hu B P, Rao X L, Wang Y Z 2017 Rare-earth Permanent Magnet Materials (Vol. 1) (Beijing: Metallurgical Industry Press) p197 (in Chinese)

    [18]

    Kou X C, Zhao T S, R. Grössinger, de Boer F R 1992 Phys. Rev. B 46 6225Google Scholar

  • [1] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [2] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟.  , 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [3] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究.  , 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [4] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [5] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究.  , 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [6] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究.  , 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [7] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟.  , 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [8] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力.  , 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [9] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响.  , 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [10] 侯志鹏, 张金宝, 徐世峰, 吴春姬, 王子涵, 杨坤隆, 王文全, 杜晓波, 苏峰. B元素添加对Co-Zr-Mo合金薄带的磁性能及结构的影响.  , 2012, 61(20): 207501. doi: 10.7498/aps.61.207501
    [11] 夏爱林, 韩宝善. 直流磁控溅射Si和玻璃衬底Fe/Co多层膜的磁性能比较.  , 2008, 57(1): 545-549. doi: 10.7498/aps.57.545
    [12] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜.  , 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [13] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理.  , 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [14] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响.  , 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
    [15] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [16] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力.  , 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [17] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究.  , 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [18] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr8Fe87B5反磁化机理研究.  , 2003, 52(3): 722-725. doi: 10.7498/aps.52.722
    [19] 荣传兵, 张宏伟, 张 健, 张绍英, 沈保根. 纳米晶永磁中面缺陷对畴壁钉扎机理的研究.  , 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [20] 于冬亮, 杨绍光, 都有为. Co纳米孔洞模板的制备和磁性.  , 2002, 51(8): 1784-1787. doi: 10.7498/aps.51.1784
计量
  • 文章访问数:  3509
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-04-22
  • 上网日期:  2022-08-10
  • 刊出日期:  2022-08-20

/

返回文章
返回
Baidu
map