-
As is well known, the structure inversion asymmetry (SIA) and Rashba spin splitting of semiconductor heterostructure can be modulated by either electric field or engineering asymmetric heterostructure. In this paper, we calculate the Rashba coefficient and Rashba spin splitting for the first subband of Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW each as a function of thickness (ws) of the inserted Al0.3Ga0.7N layer (right well) and external electric field. The thickness of GaN layer (left well) is 40-ws . With ws increasing, the Rashba coefficient and Rashba spin splitting for the first subband increase first, because the polarized electric field in the well region increases and the electrons shift towards the left heterointerfaces, and then decrease when ws20 since the electric field in the well region decreases, and the confined energy increases as effective well thickness decreases. But when ws30 , the Rashba spin splitting decreases more rapidly, since kF decreases rapidly. Contributions to the Rashba coefficient from the well is largest, lesser is the contribution from the interface, which varies slowly with ws, and the contribution from the barrier is relatively small. Then we assume ws=20 , and find that the external electric field can modulate the Rashba coefficient and Rashba spin splitting greatly because the contribution to the Rashba coefficient from the well changes rapidly with the external electric field, and the external electric field brings about additional potential and affects the spatial distribution of electrons, confined energy and Fermi level. When the direction of the external electric field is the same as (contrary to) the polarization electric field, the Rashba coefficient and Rashba spin splitting increase (decrease) with external electric field increasing. With the external electric field changing from -1.5108 V m-1 to 1.5108 V m-1, the Rashba coefficient approximately varies linearly, and the Rashba spin splitting first increases rapidly, then approximately increases linearly, and finally increases slowly. Because the value of kF increases rapidly first, then increases slowly. Results show that the Rashba coefficient and the Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW can be modulated by changing the relative thickness of GaN and Al0.3Ga0.7N layers and the external electric field, thereby giving guidance for designing the spintronic devices.
-
Keywords:
- Rashba spin splitting /
- spin-orbit coupling /
- self-consistent calculation /
- polarized effect
[1] Zutic I, Fabian J, Das S S 2004 Rev. Mod. Phys. 76 323
[2] Lo I, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307
[3] He X W, Shen B Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G Y, Chen Y H Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912
[4] Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312
[5] Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019
[6] Yan Y Z, Hu L B 2010 Chin. Phys. B. 19 047203
[7] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[8] Konig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[9] Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803
[10] Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402
[11] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601
[12] Dresselhaus G 1955 Phys. Rev. 100 580
[13] Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039
[14] Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78
[15] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnr S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
[16] de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523
[17] de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293
[18] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) pp77-86
[19] Yang W, Chang K 2006 Phys. Rev. B 73 113303
[20] Yang W, Chang K 2006 Phys. Rev. B 74 193314
[21] Hao Y F 2014 J. App. Phys. 115 244308
[22] Hao Y F 2015 J. App. Phys. 117 013911
[23] Hao Y F 2015 Phys. Lett. A 379 2853
[24] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103
[25] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104
[26] Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese) [杨鹏, 吕燕伍, 王鑫波 2015 64 197303]
[27] Litvinov V I 2003 Phys. Rev. B 68 155314
[28] Litvinov V I 2006 Appl. Phys. Lett. 89 222108
[29] Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu Deyi, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattices Microstruct. 47 522
[30] Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[31] Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302
[32] Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Communi. 151 1958
[33] Li M 2013 Commun. Theor. Phys. 60 119
[34] Li M, Sun G, Fan L B 2012 Chin. Phys. Lett. 29 127104
[35] Li M, Zhang R, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2012 Acta Phys. Sin. 61 027103 (in Chinese) [李明, 张荣, 刘斌, 傅德彝, 赵传阵, 谢自力, 修向前, 郑有炓 2012 61 027103]
[36] Calsaverini R S, Bernardes E, Carlos E J, Loss D 2008 Phys. Rev. B 78 155313
[37] Bernardes E, Schliemann J, Lee M, Carlos E J, Loss D 2007 Phys. Rev. Lett. 99 076603
[38] Tan I H, Snider G L, Chang L D Hu E L 1990 J. Appl. Phys. 68 4071
[39] Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202 (in Chinese) [王现彬, 赵正平, 冯志红 2014 63 080202]
[40] Ambacher O, Foutz B, Smart J Shealy J R, Weimann N G, Chu K, Murphy M Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334
[41] Ambacher O 1999 J. Appl. Phys 85 3222
[42] Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303
[43] Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132
[44] Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024
-
[1] Zutic I, Fabian J, Das S S 2004 Rev. Mod. Phys. 76 323
[2] Lo I, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307
[3] He X W, Shen B Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G Y, Chen Y H Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912
[4] Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312
[5] Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019
[6] Yan Y Z, Hu L B 2010 Chin. Phys. B. 19 047203
[7] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[8] Konig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[9] Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803
[10] Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402
[11] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601
[12] Dresselhaus G 1955 Phys. Rev. 100 580
[13] Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039
[14] Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78
[15] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnr S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
[16] de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523
[17] de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293
[18] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) pp77-86
[19] Yang W, Chang K 2006 Phys. Rev. B 73 113303
[20] Yang W, Chang K 2006 Phys. Rev. B 74 193314
[21] Hao Y F 2014 J. App. Phys. 115 244308
[22] Hao Y F 2015 J. App. Phys. 117 013911
[23] Hao Y F 2015 Phys. Lett. A 379 2853
[24] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103
[25] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104
[26] Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese) [杨鹏, 吕燕伍, 王鑫波 2015 64 197303]
[27] Litvinov V I 2003 Phys. Rev. B 68 155314
[28] Litvinov V I 2006 Appl. Phys. Lett. 89 222108
[29] Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu Deyi, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattices Microstruct. 47 522
[30] Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801
[31] Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302
[32] Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Communi. 151 1958
[33] Li M 2013 Commun. Theor. Phys. 60 119
[34] Li M, Sun G, Fan L B 2012 Chin. Phys. Lett. 29 127104
[35] Li M, Zhang R, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2012 Acta Phys. Sin. 61 027103 (in Chinese) [李明, 张荣, 刘斌, 傅德彝, 赵传阵, 谢自力, 修向前, 郑有炓 2012 61 027103]
[36] Calsaverini R S, Bernardes E, Carlos E J, Loss D 2008 Phys. Rev. B 78 155313
[37] Bernardes E, Schliemann J, Lee M, Carlos E J, Loss D 2007 Phys. Rev. Lett. 99 076603
[38] Tan I H, Snider G L, Chang L D Hu E L 1990 J. Appl. Phys. 68 4071
[39] Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202 (in Chinese) [王现彬, 赵正平, 冯志红 2014 63 080202]
[40] Ambacher O, Foutz B, Smart J Shealy J R, Weimann N G, Chu K, Murphy M Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334
[41] Ambacher O 1999 J. Appl. Phys 85 3222
[42] Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303
[43] Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132
[44] Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024
Catalog
Metrics
- Abstract views: 6455
- PDF Downloads: 195
- Cited By: 0