Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well

Zhao Zheng-Yin Wang Hong-Ling Li Ming

Citation:

Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well

Zhao Zheng-Yin, Wang Hong-Ling, Li Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known, the structure inversion asymmetry (SIA) and Rashba spin splitting of semiconductor heterostructure can be modulated by either electric field or engineering asymmetric heterostructure. In this paper, we calculate the Rashba coefficient and Rashba spin splitting for the first subband of Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW each as a function of thickness (ws) of the inserted Al0.3Ga0.7N layer (right well) and external electric field. The thickness of GaN layer (left well) is 40-ws . With ws increasing, the Rashba coefficient and Rashba spin splitting for the first subband increase first, because the polarized electric field in the well region increases and the electrons shift towards the left heterointerfaces, and then decrease when ws20 since the electric field in the well region decreases, and the confined energy increases as effective well thickness decreases. But when ws30 , the Rashba spin splitting decreases more rapidly, since kF decreases rapidly. Contributions to the Rashba coefficient from the well is largest, lesser is the contribution from the interface, which varies slowly with ws, and the contribution from the barrier is relatively small. Then we assume ws=20 , and find that the external electric field can modulate the Rashba coefficient and Rashba spin splitting greatly because the contribution to the Rashba coefficient from the well changes rapidly with the external electric field, and the external electric field brings about additional potential and affects the spatial distribution of electrons, confined energy and Fermi level. When the direction of the external electric field is the same as (contrary to) the polarization electric field, the Rashba coefficient and Rashba spin splitting increase (decrease) with external electric field increasing. With the external electric field changing from -1.5108 V m-1 to 1.5108 V m-1, the Rashba coefficient approximately varies linearly, and the Rashba spin splitting first increases rapidly, then approximately increases linearly, and finally increases slowly. Because the value of kF increases rapidly first, then increases slowly. Results show that the Rashba coefficient and the Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW can be modulated by changing the relative thickness of GaN and Al0.3Ga0.7N layers and the external electric field, thereby giving guidance for designing the spintronic devices.
      Corresponding author: Li Ming, mingli245@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306012), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (Grant No. 2015GGJS-145), and the Aid Project for the Leading Young Talents of Xuchang University.
    [1]

    Zutic I, Fabian J, Das S S 2004 Rev. Mod. Phys. 76 323

    [2]

    Lo I, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307

    [3]

    He X W, Shen B Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G Y, Chen Y H Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912

    [4]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [5]

    Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019

    [6]

    Yan Y Z, Hu L B 2010 Chin. Phys. B. 19 047203

    [7]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [8]

    Konig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [9]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [10]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [11]

    Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601

    [12]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [13]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [14]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78

    [15]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnr S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [16]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [17]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [18]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) pp77-86

    [19]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [21]

    Hao Y F 2014 J. App. Phys. 115 244308

    [22]

    Hao Y F 2015 J. App. Phys. 117 013911

    [23]

    Hao Y F 2015 Phys. Lett. A 379 2853

    [24]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [25]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [26]

    Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese) [杨鹏, 吕燕伍, 王鑫波 2015 64 197303]

    [27]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [28]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [29]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu Deyi, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattices Microstruct. 47 522

    [30]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [31]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [32]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Communi. 151 1958

    [33]

    Li M 2013 Commun. Theor. Phys. 60 119

    [34]

    Li M, Sun G, Fan L B 2012 Chin. Phys. Lett. 29 127104

    [35]

    Li M, Zhang R, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2012 Acta Phys. Sin. 61 027103 (in Chinese) [李明, 张荣, 刘斌, 傅德彝, 赵传阵, 谢自力, 修向前, 郑有炓 2012 61 027103]

    [36]

    Calsaverini R S, Bernardes E, Carlos E J, Loss D 2008 Phys. Rev. B 78 155313

    [37]

    Bernardes E, Schliemann J, Lee M, Carlos E J, Loss D 2007 Phys. Rev. Lett. 99 076603

    [38]

    Tan I H, Snider G L, Chang L D Hu E L 1990 J. Appl. Phys. 68 4071

    [39]

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202 (in Chinese) [王现彬, 赵正平, 冯志红 2014 63 080202]

    [40]

    Ambacher O, Foutz B, Smart J Shealy J R, Weimann N G, Chu K, Murphy M Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334

    [41]

    Ambacher O 1999 J. Appl. Phys 85 3222

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

    [44]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

  • [1]

    Zutic I, Fabian J, Das S S 2004 Rev. Mod. Phys. 76 323

    [2]

    Lo I, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307

    [3]

    He X W, Shen B Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G Y, Chen Y H Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912

    [4]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [5]

    Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019

    [6]

    Yan Y Z, Hu L B 2010 Chin. Phys. B. 19 047203

    [7]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [8]

    Konig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [9]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [10]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [11]

    Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601

    [12]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [13]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [14]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78

    [15]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnr S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [16]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [17]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [18]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) pp77-86

    [19]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [21]

    Hao Y F 2014 J. App. Phys. 115 244308

    [22]

    Hao Y F 2015 J. App. Phys. 117 013911

    [23]

    Hao Y F 2015 Phys. Lett. A 379 2853

    [24]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [25]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [26]

    Yang P, L Y W, Wang X B 2015 Acta Phys. Sin. 64 197303 (in Chinese) [杨鹏, 吕燕伍, 王鑫波 2015 64 197303]

    [27]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [28]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [29]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu Deyi, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattices Microstruct. 47 522

    [30]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [31]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [32]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Communi. 151 1958

    [33]

    Li M 2013 Commun. Theor. Phys. 60 119

    [34]

    Li M, Sun G, Fan L B 2012 Chin. Phys. Lett. 29 127104

    [35]

    Li M, Zhang R, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2012 Acta Phys. Sin. 61 027103 (in Chinese) [李明, 张荣, 刘斌, 傅德彝, 赵传阵, 谢自力, 修向前, 郑有炓 2012 61 027103]

    [36]

    Calsaverini R S, Bernardes E, Carlos E J, Loss D 2008 Phys. Rev. B 78 155313

    [37]

    Bernardes E, Schliemann J, Lee M, Carlos E J, Loss D 2007 Phys. Rev. Lett. 99 076603

    [38]

    Tan I H, Snider G L, Chang L D Hu E L 1990 J. Appl. Phys. 68 4071

    [39]

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202 (in Chinese) [王现彬, 赵正平, 冯志红 2014 63 080202]

    [40]

    Ambacher O, Foutz B, Smart J Shealy J R, Weimann N G, Chu K, Murphy M Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334

    [41]

    Ambacher O 1999 J. Appl. Phys 85 3222

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

    [44]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

  • [1] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [3] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] Chen Xing, Xue Xiao-Bo, Zhang Sheng-Kang, Ma Yu-Quan, Fei Peng, Jiang Yuan, Ge Jun. Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction. Acta Physica Sinica, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [7] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [8] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [9] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [10] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [13] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [14] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [15] Zhang Lei, Li Hui-Wu, Hu Liang-Bin. Study of stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling. Acta Physica Sinica, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [16] Li Ming, Zhang Rong, Liu Bin, Fu De-Yi, Zhao Chuan-Zhen, Xie Zhi-Li, Xiu Xiang-Qian, Zheng You-Dou. Study of Rashba spin splitting and intersubband spin-orbit coupling effect in AlGaN/GaN quantum wells. Acta Physica Sinica, 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [17] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [18] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [19] Xiao Xian-Bo, Li Xiao-Mao, Chen Yu-Guang. Spin-polarized transport in quantum waveguide systems with attached stubs. Acta Physica Sinica, 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [20] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
Metrics
  • Abstract views:  6455
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2015
  • Accepted Date:  01 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map