搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽运-检测型非线性磁光旋转铷原子磁力仪的研究

缪培贤 杨世宇 王剑祥 廉吉庆 涂建辉 杨炜 崔敬忠

引用本文:
Citation:

抽运-检测型非线性磁光旋转铷原子磁力仪的研究

缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation

Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong
PDF
导出引用
  • 报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000100000 nT的磁场测量范围内磁场采样率可实现11000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.
    We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubidium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a /2 pulse of oscillating magnetic field for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the magnetic field. The linearly polarized probing beam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula:B=(2/) f, where and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. The atomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.
      通信作者: 缪培贤, miaopeixian@163.com
      Corresponding author: Miao Pei-Xian, miaopeixian@163.com
    [1]

    Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404

    [2]

    Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112

    [3]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801

    [4]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75

    [5]

    Clem T R 1998 Nav. Eng. J. 110 139

    [6]

    Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004

    [7]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001

    [9]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801

    [10]

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]

    [11]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [12]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [13]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [14]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010 59 877]

    [15]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014 63 110701]

    [16]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [17]

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016 65 210702]

    [18]

    Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球 7 460]

    [19]

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]

    [20]

    Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)

  • [1]

    Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404

    [2]

    Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112

    [3]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801

    [4]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75

    [5]

    Clem T R 1998 Nav. Eng. J. 110 139

    [6]

    Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004

    [7]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001

    [9]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801

    [10]

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]

    [11]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [12]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [13]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [14]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010 59 877]

    [15]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014 63 110701]

    [16]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [17]

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016 65 210702]

    [18]

    Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球 7 460]

    [19]

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]

    [20]

    Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [3] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2021, (): . doi: 10.7498/aps.70.20211122
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [7] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统.  , 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [8] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [9] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [10] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究.  , 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [13] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [14] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [15] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究.  , 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [19] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  8217
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-05-25
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map