搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空封装含Herriott多反射腔原子气室及其在原子磁力仪中的应用

谢子平 郝传鹏 盛东

引用本文:
Citation:

真空封装含Herriott多反射腔原子气室及其在原子磁力仪中的应用

谢子平, 郝传鹏, 盛东

Atomic Vapor Cells with Herriott-Cavity sealed under vacuum and their applications in Atomic Magnetometry

XIE ziping, Hao chuanpeng, Sheng dong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文主要研究用于精密测量的含多反射腔原子气室的标准化制备方法。这包括一方面将Herriott多反射腔技术和阳极键合技术相结合,另一方面在全真空条件下密封含多反射腔原子气室。这样制备出的新型气室可以广泛应用于原子器件中,在提升测量灵敏度的同时,提高器件的标准化程度。本文介绍这种原子气室的制备方法的同时,还通过制作出的气室在磁光双共振碱金属原子磁力仪中的应用展示其工作潜能。该示范展示了利用含22次反射的多反射腔,充有400 Torr氮气和自然丰度铷原子气室获得的磁共振信号,并依此信号为基础在10-20 Hz的频率区间测得了95 fT/Hz1/2的磁场灵敏度。之后,我们计划将基于这种技术制作的气室拓展到对气室质量有高要求的氦原子磁力仪和核自旋原子共磁力仪中。
    This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we have built a vacuum system that enables sealing the mulipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact with the silicon wafer which is bonded with a Herriott-cavity. The cavity part and the glass part are sealed together afterwards using the anodic bonding technique. The resulting vapor cells offer enhanced measurement sensitivity and improved device standardization, which allow seamless replacements of each other in practical applications. The performance of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz1/2 is achieved at the frequency range of 10 to 20 Hz with a multipass cell filled with 400 Torr N2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.
  • [1]

    Kitching J 2018 Appl. Phys. Rev. 5 (3) 031302

    [2]

    Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A, Moreland J 2004 Appl. Phys. Lett. 85 1460

    [3]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, and Burns G R 2017 Phys. Rev. Lett. 118 163601

    [4]

    Budker D and Kimball D F J 2013 Optical Magnetometry (Cambridge: Cambridge University Press)

    [5]

    Budker D and Romalis M 2007 Nat. Phys. 3 227

    [6]

    Knappe S, Velichansky V, Robinson H G, Kitching J, Hollberg L 2003 Rev. Sci. Instrum. 74 (6) 3142

    [7]

    Liew L A, Knappe S, Moreland J, Robinson H, Hollberg L, Kitching J 2004 Appl. Phys. Lett. 84 14 2694

    [8]

    Mhaskar R, Knappe S, and Kitching J 2012 Appl. Phys. Lett. 101 241105

    [9]

    Guo Q Q, Hu T, Feng X Y, Zhang M K, Chen C Q, Zhang X, Yao Z K, Xu J Y, Wang Q, Fu F Y, Zhang Y, Chang Y and Yang X D 2023 Chinese Phys. B 32 040702

    [10]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, and Brookes M J 2018 Nature 555 657

    [11]

    Zhang R, Xiao W, Ding Y, Feng Y, Peng X, Shen L, Sun C, Wu T, Wu Y, Yang Y, Zheng Z, Zhang X, Chen J, and Guo H 2020 Sci. Adv. 6 eaba8792

    [12]

    Gavazzi B, Bertrand L, Munschy M, Mercier de Lépinay J, Diraison M, and Géraud Y 2020 J GEOPHYS RES-SOL EA 125 e2019JB018870

    [13]

    Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W, Phillips J D, and Ruder M E 2005 75th anniversary: The historical development of the magnetic method in explorationhistorical development of magnetic method Geophysics 70 33ND

    [14]

    Pollinger A, Lammegger R, Magnes W, Hagen C, Ellmeier M, Jernej I, Leichtfried M, Kürbisch C, Maierhofer R, Wallner R, Fremuth G, Amtmann C, Betzler A, Delva M, Prattes G and Baumjohann W 2018 Meas. Sci. Technol. 29 095103

    [15]

    Dougherty M K, Khurana K K, Neubauer F M, Russell C T, Saur J, Leisner J S, and Burton M E 2006 Science 311 1406

    [16]

    Afach S, Buchler B C, Budker D, Dailey C, Derevianko A, Dumont V, Figueroa N L, Gerhardt I, Grujić Z D, Guo H, Hao C P, Hamilton P S, Hedges M, Kimball D F J, Kim D, Khamis S, Kornack T, Lebedev V, Lu Z T, Roig H M, Monroy M, Padniuk M, Palm C A, Park S Y, Paul K V, Penaflor A, Peng X, Pospelov M, Preston R, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Sheng D, Shin Y C, Smiga J A, Stalnaker J E, Sulai I, Tandon D, Wang T, Weis A, Wickenbrock A, Wilson T, Wu T, Wurm D, Xiao W, Yang Y C, Yu D R & Zhang J W 2021 Nat. Phys. 17 1396

    [17]

    Sachdeva N, Fan I, Babcock E, Burghoff M, Chupp T E, Degenkolb S, Fierlinger P, Haude S, Kraegeloh E, Kilian W, Knappe-Grüneberg S, Kuchler F, Liu T, Marino M, Meinel J, Rolfs K, Salhi Z, Schnabel A, Singh J T, Stuiber S, Terrano W A, Trahms L, and Voigt J 2019 Phys. Rev. Lett. 123 143003

    [18]

    Li S, Vachaspati P, Sheng D, Dural N, and Romalis M V 2011 Phys. Rev. A 84, 061403

    [19]

    Sheng D, Li S, Dural N, and Romalis M V 2013 Phys. Rev. Lett. 110, 160802

    [20]

    Yuan L L, Huang J, Fan W F, Wang Z, Zhang K, Pei H Y, Cai Z, Gao H, Liu S X, Quan W 2023 Measurement 217 113043

    [21]

    Sheng D, Kabcenell A, Romalis M V 2014 Phys. Rev. Lett., 113 (16) 163002

    [22]

    Wang T Y, Peng J P, Li J L, Liu Z C, Mao Y K 2024 Sensors and Actuators A: Physical 374 115461

    [23]

    Silver J A. 2005 Appl. Opt. 44(31) 6545

    [24]

    Cai B, Hao C P, Qiu Z R, Yu Q Q, Xiao W, and Sheng D 2020 Phys. Rev. A 101, 053436

    [25]

    Cai B 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [蔡波 2020 博士学位论文 (合肥:中国科学技术大学)]

    [26]

    Cai B Sheng D 2019 CN patent CN110187296A [蔡波,盛东 2019 CN110187296A]

    [27]

    Seltzer S J. 2008 Ph. D. Dissertation (Princeton: Princeton University)

    [28]

    Kluttz K A, Averett T D, Wolin B A, 2013 Phys. Rev. A 87, 032516

    [29]

    Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6, 280

    [30]

    Brossel J and Bitter F 1952 Phys. Rev. 86 308

    [31]

    Abragam A 1961 The principles of nuclear magnetism (Oxford: Clarendon Press) pp44-46

    [32]

    Xiao Y, Novikova I, Phillips D F, and Walsworth R L 2006 Phys. Rev. Lett. 96, 043601

    [33]

    Lucivero V G, McDonough N D, Dural N, and Romalis M V 2017 Phys. Rev. A 96, 062702

    [34]

    Smullin S J, Savukov I M, Vasilakis G, Ghosh R K, and Romalis M V 2009 Phys. Rev. A 80 033420

    [35]

    Yu Q Q, Liu S Q, Wang X K, Sheng D 2023, Phys. Rev. A 107, 043110

    [36]

    Mathur B, Tang H, Happer W 1968 Phys. Rev 171, 11

    [37]

    Liu Y, Peng X, Wang H D, Wang B W, Yi K W, Sheng D, and Guo H 2022 Opt. Lett. 47 5252

    [38]

    Hao C P, Yu Q Q, Yuan C Q, Liu S Q, and Sheng D 2021 Phys. Rev. A 103 053523

  • [1] 黄文艺, 杨保东, 樊健, 王军民, 周海涛. 基于铯原子气室反抽运光增强相干蓝光.  , doi: 10.7498/aps.71.20220480
    [2] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究.  , doi: 10.7498/aps.71.20220775
    [3] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , doi: 10.7498/aps.71.20221618
    [4] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , doi: 10.7498/aps.71.20211122
    [5] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度.  , doi: 10.7498/aps.70.20210920
    [6] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量.  , doi: 10.7498/aps.70.20211122
    [7] 李辉, 江敏, 朱振南, 徐文杰, 徐旻翔, 彭新华. 铷-氙气室原子磁力仪系统磁场测量能力的标定.  , doi: 10.7498/aps.68.20190868
    [8] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱.  , doi: 10.7498/aps.68.20181872
    [9] 张军海, 王平稳, 韩煜, 康崇, 孙伟民. 共振线极化光实现原子矢量磁力仪的理论研究.  , doi: 10.7498/aps.67.20172108
    [10] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究.  , doi: 10.7498/aps.66.160701
    [11] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究.  , doi: 10.7498/aps.65.210702
    [12] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究.  , doi: 10.7498/aps.63.110701
    [13] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , doi: 10.7498/aps.63.020702
    [14] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究.  , doi: 10.7498/aps.62.133201
    [15] 高峰, 常宏, 王心亮, 田晓, 张首刚. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究.  , doi: 10.7498/aps.60.050601
    [16] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明.  , doi: 10.7498/aps.60.114207
    [17] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究.  , doi: 10.7498/aps.59.877
    [18] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究.  , doi: 10.7498/aps.58.3903
    [19] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光.  , doi: 10.7498/aps.49.235
    [20] 杨丰, 刘淑琴, 董太乾. 85Rb灯对87Rb原子的光抽运.  , doi: 10.7498/aps.33.116
计量
  • 文章访问数:  67
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-23

/

返回文章
返回
Baidu
map