Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows

Li De-Mei Lai Hui-Lin Xu Ai-Guo Zhang Guang-Cai Lin Chuan-Dong Gan Yan-Biao

Citation:

Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows

Li De-Mei, Lai Hui-Lin, Xu Ai-Guo, Zhang Guang-Cai, Lin Chuan-Dong, Gan Yan-Biao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We use a discrete Boltzmann model (DBM) to simulate the multi-mode Rayleigh-Taylor instability (RTI) in a compressible flow.This DBM is physically equivalent to a Navier-Stokes model supplemented by a coarse-grained model for thermodynamic nonequilibrium behavior.The validity of the model is verified by comparing simulation results of Riemann problems,Sod shock tube,collision between two strong shock waves,and thermal Couette flow with analytical solutions.Grid independence is verified.The DBM is utilized to simulate the nonlinear evolution of the RTI from multi-mode initial perturbation with discontinuous interface.We obtain the basic process of the initial disturbance interface which develops into mushroom graphs.The evolution of the system is relatively slow at the beginning,and the interface moves down on a whole.This is mainly due to the fact that the heat transfer plays a leading role,and the exchange of internal energy occurs near the interface of fluid.The overlying fluid absorbs heat,which causes the volume to expand,and the underlying fluid releases heat,which causes the volume to shrink,consequently the fluid interface moves downward.Meanwhile,due to the effects of viscosity and thermal conduction,the perturbed interface is smoothed.The evolution rate is slow at the initial stage.As the modes couple with each other,the evolution begins to grow faster.As the interface evolves gradually into the gravity dominated stage,the overlying and underlying fluids begin to exchange the gravitational potentials via nonlinear evolution.Lately,the two parts of fluid permeate each other near the interface.The system goes through the nonlinear disturbance and irregular nonlinear stages,then develops into the typical “mushroom” stage.Afterwards,the system evolves into the turbulent mixing stage.Owing to the coupling and development of perturbation modes,and the transformation among the gravitational potential energy,compression energy and kinetic energy,the system first approaches to a transient local thermodynamic equilibrium,then deviates from it and the perturbation grows linearly.After that,at the beginning,the fluid system tends to approach to an equilibrium state,which is caused by the adjustment of the system,and the disturbance of the multi-mode initial interface moves toward a process of the eigenmode stage.Then,the system deviates from the equilibrium state linearly,which is due to the flattening of the system interface and the conversing of the compression energy into internal energy.Moreover, the system tends to approach to the equilibrium state again,and this is because the modes couple and the disturbance interface is further “screened”.The system is in a relatively stable state.Furthermore,the system is farther away from the equilibrium state because of the gravitational potential energy of the fluid system transformation.The compression energy of the system is released further,and the kinetic energy is further increased.After that,the nonequilibrium intensity decreases,and then the system is slowly away from thermodynamic equilibrium.The interface becomes more and more complicated,and the nonequilibrium modes also become more and more abundant.
      Corresponding author: Lai Hui-Lin, hllai@fjnu.edu.cn;Xu_aiguo@iapcm.ac.cn ; Xu Ai-Guo, hllai@fjnu.edu.cn;Xu_aiguo@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11301082, 11475028, 11772064), the Natural Science Foundation of Fujian Province, China (Grant No. 2014J05003), the Office of Fujian Province Education Fund, China (Grant Nos. JA13069, JB13020), the Natural Science Foundation of Hebei Province, China (Grant No. A2017409014), the Natural Science Foundation of Hebei Educational Commission, China (Grant No. ZD2017001), and the Training Funds for Talent Engineering in Hebei Province, China (Grant No. A201500111).
    [1]

    Rayleigh L 1882 Proc. London Math. Soc. s1-14 170

    [2]

    Lamb H 1932 Hydrodynamics (6th Ed.) (London:Cambridge University press) p501

    [3]

    Taylor G 1950 Proc. R. Soc. London A 201 192

    [4]

    Betti R, Goncharov V, McCrory R, Verdon C 1998 Phys. Plasmas (1994-present) 5 1446

    [5]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [6]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang L M, Ding Y K, Zhang W Y 2017 Sci. China:Phys. Mech. Astron. 60 055201

    [7]

    Cabot W, Cook A 2006 Nat. Phys. 2 562

    [8]

    Berthoud G 2000 Annu. Rev. Fluid Mech. 32 573

    [9]

    Barber J L, Kadau K, Germann T C, Alder B J 2008 Eur. Phys. J. B 64 271

    [10]

    Celani A, Mazzino A, Vozella L 2006 Phys. Rev. L. 96 134504

    [11]

    Moin P 1991 Comput. Meth. Appl. Mech. Eng. 87 329

    [12]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (New York:Oxford University Press) pp179-255

    [13]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642

    [14]

    Li Q, Luo K H, Gao Y J, He Y L 2012 Phys. Rev. E 85 026704

    [15]

    Liu G J, Guo Z L 2013 Int. J. Numer. Method H. 23 176

    [16]

    Scagliarini A, Biferale L, Sbragaglia M, Sugiyama K, Toschi F 2010 Phys. Fluids 22 055101

    [17]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582

    [18]

    Xu A G, Zhang G C, Gan Y B 2016 Mech. Eng. 38 361 (in Chinese)[许爱国, 张广财, 甘延标 2016 力学与实践 38 361]

    [19]

    Gan Y B, Xu A G, Zhang G C, Yu X J, Li Y J 2008 Physica A 387 1721

    [20]

    Gan Y B, Xu A G, Zhang G C, Li Y J 2011 Phys. Rev. E 83 056704

    [21]

    Gan Y B, Xu A G, Zhang G C, Li Y J, Li H 2011 Phys. Rev. E 84 046715

    [22]

    Yan B, Xu A G, Zhang G C, Ying Y J, Li H 2013 Front. Phys. 8 94

    [23]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华 2014 物理学进展 34 136]

    [24]

    Xu A G, Zhang G C, Ying Y J 2015 Acta Phys. Sin. 64 184701 (in Chinese)[许爱国, 张广财, 应阳君 2015 64 184701]

    [25]

    Xu A G, Zhang G C, Ying Y J, Wang C 2016 Sci. China:Phys. Mech. Astron. 59 650501

    [26]

    Lin C D, Xu A G, Zhang G C, Li Y J, Succi S 2014 Phys. Rev. E 89 013307

    [27]

    Lai H L, Xu A G, Zhang G C, Gan Y B, Ying Y J, Succi S 2016 Phys. Rev. E 94 023106

    [28]

    Liu H, Kang W, Zhang Q, Zhang Y, Duan H L, He X T 2016 Front. Phys. 11 115206

    [29]

    Gan Y B, Xu A G, Zhang G C, Yang Y 2013 Europhys. Lett. 103 24003

    [30]

    Gan Y B, Xu A G, Zhang G C, Succi S 2015 Soft Matter 11 5336

    [31]

    Watari M, Tsutahara M 2004 Phys. Rev. E 70 016703

    [32]

    Zhang H X 1988 Acta Aerodyn. Sin. 6 43 (in Chinese)[张涵信 1988 空气动力学学报 6 43]

    [33]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [34]

    Xu A G, Zhang G C 2016 The 9th National Conference on Fluid Mechanics Nanjing, China Oct. 20-23, 2016 (in Chinese)[许爱国, 张广财 2016 第九届全国流体力学学术会议, 南京, 2016年10月20–23 日]

    [35]

    Xu A G, Zhang G C 2016 Special Academic Report of Electromechanical College of Nanjing Forestry University Nanjing, China, Oct. 25, 2016 (in Chinese)[许爱国, 张广财 2016 南京林业大学机电学院专题学术报告, 中国南京, 2016年10月25日]

    [36]

    Xu A G, Zhang G C 2016 Academic Report on Physics Department of Renmin University of China Beijing, China, Nov. 23, 2016 (in Chinese)[许爱国, 张广财 2016 中国人民大学物理系专题学术报告, 中国北京, 2016 年11 月23日]

    [37]

    Xu A G, Zhang G C 2016 The 4th Academic Seminar of LBM and Its Applications Beijing, China, Nov. 26, 2016 (in Chinese)[许爱国, 张广财 2016 第四届LBM及其应用学术研讨会, 中国北京, 2016年11月26日]

  • [1]

    Rayleigh L 1882 Proc. London Math. Soc. s1-14 170

    [2]

    Lamb H 1932 Hydrodynamics (6th Ed.) (London:Cambridge University press) p501

    [3]

    Taylor G 1950 Proc. R. Soc. London A 201 192

    [4]

    Betti R, Goncharov V, McCrory R, Verdon C 1998 Phys. Plasmas (1994-present) 5 1446

    [5]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [6]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang L M, Ding Y K, Zhang W Y 2017 Sci. China:Phys. Mech. Astron. 60 055201

    [7]

    Cabot W, Cook A 2006 Nat. Phys. 2 562

    [8]

    Berthoud G 2000 Annu. Rev. Fluid Mech. 32 573

    [9]

    Barber J L, Kadau K, Germann T C, Alder B J 2008 Eur. Phys. J. B 64 271

    [10]

    Celani A, Mazzino A, Vozella L 2006 Phys. Rev. L. 96 134504

    [11]

    Moin P 1991 Comput. Meth. Appl. Mech. Eng. 87 329

    [12]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (New York:Oxford University Press) pp179-255

    [13]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642

    [14]

    Li Q, Luo K H, Gao Y J, He Y L 2012 Phys. Rev. E 85 026704

    [15]

    Liu G J, Guo Z L 2013 Int. J. Numer. Method H. 23 176

    [16]

    Scagliarini A, Biferale L, Sbragaglia M, Sugiyama K, Toschi F 2010 Phys. Fluids 22 055101

    [17]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582

    [18]

    Xu A G, Zhang G C, Gan Y B 2016 Mech. Eng. 38 361 (in Chinese)[许爱国, 张广财, 甘延标 2016 力学与实践 38 361]

    [19]

    Gan Y B, Xu A G, Zhang G C, Yu X J, Li Y J 2008 Physica A 387 1721

    [20]

    Gan Y B, Xu A G, Zhang G C, Li Y J 2011 Phys. Rev. E 83 056704

    [21]

    Gan Y B, Xu A G, Zhang G C, Li Y J, Li H 2011 Phys. Rev. E 84 046715

    [22]

    Yan B, Xu A G, Zhang G C, Ying Y J, Li H 2013 Front. Phys. 8 94

    [23]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华 2014 物理学进展 34 136]

    [24]

    Xu A G, Zhang G C, Ying Y J 2015 Acta Phys. Sin. 64 184701 (in Chinese)[许爱国, 张广财, 应阳君 2015 64 184701]

    [25]

    Xu A G, Zhang G C, Ying Y J, Wang C 2016 Sci. China:Phys. Mech. Astron. 59 650501

    [26]

    Lin C D, Xu A G, Zhang G C, Li Y J, Succi S 2014 Phys. Rev. E 89 013307

    [27]

    Lai H L, Xu A G, Zhang G C, Gan Y B, Ying Y J, Succi S 2016 Phys. Rev. E 94 023106

    [28]

    Liu H, Kang W, Zhang Q, Zhang Y, Duan H L, He X T 2016 Front. Phys. 11 115206

    [29]

    Gan Y B, Xu A G, Zhang G C, Yang Y 2013 Europhys. Lett. 103 24003

    [30]

    Gan Y B, Xu A G, Zhang G C, Succi S 2015 Soft Matter 11 5336

    [31]

    Watari M, Tsutahara M 2004 Phys. Rev. E 70 016703

    [32]

    Zhang H X 1988 Acta Aerodyn. Sin. 6 43 (in Chinese)[张涵信 1988 空气动力学学报 6 43]

    [33]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [34]

    Xu A G, Zhang G C 2016 The 9th National Conference on Fluid Mechanics Nanjing, China Oct. 20-23, 2016 (in Chinese)[许爱国, 张广财 2016 第九届全国流体力学学术会议, 南京, 2016年10月20–23 日]

    [35]

    Xu A G, Zhang G C 2016 Special Academic Report of Electromechanical College of Nanjing Forestry University Nanjing, China, Oct. 25, 2016 (in Chinese)[许爱国, 张广财 2016 南京林业大学机电学院专题学术报告, 中国南京, 2016年10月25日]

    [36]

    Xu A G, Zhang G C 2016 Academic Report on Physics Department of Renmin University of China Beijing, China, Nov. 23, 2016 (in Chinese)[许爱国, 张广财 2016 中国人民大学物理系专题学术报告, 中国北京, 2016 年11 月23日]

    [37]

    Xu A G, Zhang G C 2016 The 4th Academic Seminar of LBM and Its Applications Beijing, China, Nov. 26, 2016 (in Chinese)[许爱国, 张广财 2016 第四届LBM及其应用学术研讨会, 中国北京, 2016年11月26日]

  • [1] Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian. Solution of the discrete Boltzmann equation: Based on the finite volume method. Acta Physica Sinica, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [5] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [6] Huang Hao-Wei, Liang Hong, Xu Jiang-Rong. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability. Acta Physica Sinica, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [7] Li Bi-Yong, Peng Jian-Xiang, Gu Yan, He Hong-Liang. Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading. Acta Physica Sinica, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [8] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [9] Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface. Acta Physica Sinica, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [10] Xu Ai-Guo, Zhang Guang-Cai, Ying Yang-Jun. Progess of discrete Boltzmann modeling and simulation of combustion system. Acta Physica Sinica, 2015, 64(18): 184701. doi: 10.7498/aps.64.184701
    [11] Li Yuan, Luo Xi-Sheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability. Acta Physica Sinica, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [12] Yuan Yong-Teng, Wang Li-Feng, Tu Shao-Yong, Wu Jun-Feng, Cao Zhu-Rong, Zhan Xia-Yu, Ye Wen-Hua, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun, Miao Wen-Yong. Experimental investigation on the influence of the dopant ratio on ablative Rayleigh-Taylor instability growth. Acta Physica Sinica, 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [13] Xia Tong-Jun, Dong Yong-Qiang, Cao Yi-Gang. Effects of surface tension on Rayleigh-Taylor instability. Acta Physica Sinica, 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [14] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [15] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [16] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [17] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Li Ying-Jun. Study on the Kelvin-Helmholtz instability in two-dimensional incompressible fluid. Acta Physica Sinica, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [18] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Sun Yan-Qian, Zheng Bing-Song, Li Ying-Jun. Kelvin-Helmholtz instability in compressible fluids. Acta Physica Sinica, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [19] Wu Jun-Feng, ]Ye Wen-Hua, Zhang Wei-Yan, He Xian-Tu. Nonlinear threshold of two-dimensional Rayleigh-Taylor growth for incompressible liquid. Acta Physica Sinica, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [20] YU HUI-DAN, ZHAO KAI-HUA. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLOW SIMULATION. Acta Physica Sinica, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
Metrics
  • Abstract views:  7226
  • PDF Downloads:  294
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2017
  • Accepted Date:  29 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map