搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面张力对Rayleigh-Taylor不稳定性的影响

夏同军 董永强 曹义刚

引用本文:
Citation:

界面张力对Rayleigh-Taylor不稳定性的影响

夏同军, 董永强, 曹义刚

Effects of surface tension on Rayleigh-Taylor instability

Xia Tong-Jun, Dong Yong-Qiang, Cao Yi-Gang
PDF
导出引用
  • 将具有简单速度势的Layzer模型和Zufiria模型推广至非理想流体情况, 并分别利用这两种模型研究了界面张力对Rayleigh-Taylor不稳定性的影响. 首先得到了两种模型下气泡的渐近速度和渐近曲率的解析表达式; 其次系统研究了界面张力对气泡的渐近速度和渐近曲率的影响; 最后将两种模型进行了比较, 并将气泡的渐近速度和数值模拟进行了比较. 研究表明: 界面张力压低了气泡的速度, 但对曲率没有影响; 利用简单速度势的Layzer模型所得的气泡的渐近速度比复杂速度势的Layzer模型的值小, 但是比Zufiria模型的值大; 当阿特伍德数等于1时, 简单速度势的Layzer模型和复杂速度势的Layzer模型给出的结果一致.
    In this paper, Layzers model which has a simple velocity potential, and Zufirias model are extended to the case of non-ideal fluids, and the effects of surface tension on Rayleigh-Taylor instability are investigated. Firstly, the analytical expressions for the asymptotic bubble velocity and curvature are obtained in the two models. Secondly, the effects of surface tension on Rayleigh-Taylor instability are studied systematically. Finally, the two models are compared with each other and the comparisons with numerical simulation are made as well. The results indicate that the surface tension depresses the bubble velocity, but does not affect the bubble curvature. The Layzers model with the simple velocity potential gives a smaller bubble velocity than that predicted by the Layzers model with a complex velocity potential. But the bubble velocity predicted by the Layzers model with the simple velocity potential is larger than that obtained by Zufirias model. Both Layzers models lead to the same bubble velocity when the Atwood number is A = 1.
    • 基金项目: 河南省科技厅自然科学基金(批准号: 112300410151)和河南省教育厅自然科学基金(批准号: 12A140012, 13A140658)资助的课题.
    • Funds: Project supported by the Foundation of Henan Provincial Department of Science and Technology, China (Grant No. 112300410151), and the Foundation of Henan Educational Committee, China (Grant Nos. 12A140012, 13A140658).
    [1]

    Rayleigh L 1883 Proc. London Math. Soc. 14 170

    [2]

    Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192

    [3]

    Buchler J R, Livio M, Colgate S A 1980 Space Science Rev. 27 571

    [4]

    Keskinen M J, Ossakow S L, Szuszczewicz E P, Holmes J C 1981 J. Geophys. Res. 86 5785

    [5]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202

    [6]

    Rayleigh L 1900 Scientific Papers II (Cambridge: Cambridge University Press) p200

    [7]

    Inogamov N A, Abarzhi S I 1995 Physica D 87 339

    [8]

    Abarzhi S I 1999 Phys. Rev. E 59 1729

    [9]

    Layzer D 1955 Astrophys. J. 122 1

    [10]

    Oron D, Arazi L, Kartoon D, Rikanati A, Alon U, Shvarts D 2001 Phys. Plasmas 8 2883

    [11]

    Alon U 1995 Phys. Rev. Lett. 74 534

    [12]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [13]

    Dimonte G, Schneider M 2000 Phys. Fluids 12 304

    [14]

    Mikaelian K O 1998 Phys. Rev. Lett. 80 508

    [15]

    Zufiria J A 1988 Phys. Fluids 31 440

    [16]

    Zhang Q1998 Phys. Rev. Lett. 81 3391

    [17]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [18]

    Sohn S I 2003 Phys. Rev. E 67 026301

    [19]

    Sohn S I 2004 Phys. Rev. E 70 045301(R)

    [20]

    LeLevier R, Lasher G J, Bjorklund F 1955 Effect of a density gradient on Taylor instability (Lawrence Livermore Laboratory report UCRL-4459)

    [21]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 61 075207]

    [22]

    Zhang Y, Ding N 2008 Chin. Phys. B 17 2994

    [23]

    Cao Y G, Guo H Z, Zhang Z F, Sun Z H, Chow W K 2011 J. Phys. A: Math. Theor. 44 275501

    [24]

    Huo X H, Wang L F, Tao Y S, Li Y J 2013 Acta Phys. Sin. 62 144705 (in Chinese) [霍新贺, 王立峰, 陶烨晟, 李英骏 2013 62 144705]

    [25]

    Chen X M, Fried E 2006 J. Fluid Mech. 560 395

    [26]

    Mitcher M, Landshoff R K M 1964 Phys. Fluids 7 862

    [27]

    Wolf G H 1969 Z. Physik 227 291

    [28]

    Sun L 2008 Chin. Phys. Lett. 25 1343

    [29]

    Wang L F, Ye W H, Fan Z F, Li Y J 2009 Acta Phys. Sin. 58 4787 (in Chinese) [王立锋, 叶文华, 范征锋, 李英骏 2009 58 4787]

    [30]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese) [刘云龙, 张阿曼, 王诗平, 田昭丽 2012 61 224702]

    [31]

    Young Y N, Ham F E 2006 J. Turbul. 7 1

    [32]

    Sohn S I 2009 Phys. Rev. E 80 055302(R)

  • [1]

    Rayleigh L 1883 Proc. London Math. Soc. 14 170

    [2]

    Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192

    [3]

    Buchler J R, Livio M, Colgate S A 1980 Space Science Rev. 27 571

    [4]

    Keskinen M J, Ossakow S L, Szuszczewicz E P, Holmes J C 1981 J. Geophys. Res. 86 5785

    [5]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202

    [6]

    Rayleigh L 1900 Scientific Papers II (Cambridge: Cambridge University Press) p200

    [7]

    Inogamov N A, Abarzhi S I 1995 Physica D 87 339

    [8]

    Abarzhi S I 1999 Phys. Rev. E 59 1729

    [9]

    Layzer D 1955 Astrophys. J. 122 1

    [10]

    Oron D, Arazi L, Kartoon D, Rikanati A, Alon U, Shvarts D 2001 Phys. Plasmas 8 2883

    [11]

    Alon U 1995 Phys. Rev. Lett. 74 534

    [12]

    Dimonte G 2000 Phys. Plasmas 7 2255

    [13]

    Dimonte G, Schneider M 2000 Phys. Fluids 12 304

    [14]

    Mikaelian K O 1998 Phys. Rev. Lett. 80 508

    [15]

    Zufiria J A 1988 Phys. Fluids 31 440

    [16]

    Zhang Q1998 Phys. Rev. Lett. 81 3391

    [17]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [18]

    Sohn S I 2003 Phys. Rev. E 67 026301

    [19]

    Sohn S I 2004 Phys. Rev. E 70 045301(R)

    [20]

    LeLevier R, Lasher G J, Bjorklund F 1955 Effect of a density gradient on Taylor instability (Lawrence Livermore Laboratory report UCRL-4459)

    [21]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 61 075207]

    [22]

    Zhang Y, Ding N 2008 Chin. Phys. B 17 2994

    [23]

    Cao Y G, Guo H Z, Zhang Z F, Sun Z H, Chow W K 2011 J. Phys. A: Math. Theor. 44 275501

    [24]

    Huo X H, Wang L F, Tao Y S, Li Y J 2013 Acta Phys. Sin. 62 144705 (in Chinese) [霍新贺, 王立峰, 陶烨晟, 李英骏 2013 62 144705]

    [25]

    Chen X M, Fried E 2006 J. Fluid Mech. 560 395

    [26]

    Mitcher M, Landshoff R K M 1964 Phys. Fluids 7 862

    [27]

    Wolf G H 1969 Z. Physik 227 291

    [28]

    Sun L 2008 Chin. Phys. Lett. 25 1343

    [29]

    Wang L F, Ye W H, Fan Z F, Li Y J 2009 Acta Phys. Sin. 58 4787 (in Chinese) [王立锋, 叶文华, 范征锋, 李英骏 2009 58 4787]

    [30]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2012 Acta Phys. Sin. 61 224702 (in Chinese) [刘云龙, 张阿曼, 王诗平, 田昭丽 2012 61 224702]

    [31]

    Young Y N, Ham F E 2006 J. Turbul. 7 1

    [32]

    Sohn S I 2009 Phys. Rev. E 80 055302(R)

  • [1] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响.  , 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响.  , 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用.  , 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响.  , 2022, 71(16): 168101. doi: 10.7498/aps.71.20220322
    [5] 孙伟, 吕冲, 雷柱, 仲佳勇. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究.  , 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [6] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟.  , 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [7] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [8] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟.  , 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [9] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究.  , 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [10] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟.  , 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [11] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型.  , 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [12] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响.  , 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [13] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究.  , 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [14] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响.  , 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [15] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析.  , 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [16] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究.  , 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [17] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究.  , 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [18] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型.  , 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [19] 郭媛媛, 陈晓松. 二元高斯核模型的相不稳定性研究.  , 2005, 54(12): 5755-5762. doi: 10.7498/aps.54.5755
    [20] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性.  , 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
计量
  • 文章访问数:  7211
  • PDF下载量:  584
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-05
  • 修回日期:  2013-07-27
  • 刊出日期:  2013-11-05

/

返回文章
返回
Baidu
map