Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium

He Yan Zhou Gang Liu Yan-Xia Wang Hao Xu Dong-Sheng Yang Rui

Citation:

Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium

He Yan, Zhou Gang, Liu Yan-Xia, Wang Hao, Xu Dong-Sheng, Yang Rui
cstr: 32037.14.aps.67.20171670
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • During the plastic deformation of hexagonal metals, it is easy to generate the point defect clusters with complex shapes and configurations due to their anisotropic properties. The interactions among these clusters and between these clusters and moving dislocations significantly influence the physical and mechanical properties of hexagonal materials. However, none of these issues in particular concerning the evolutions of vacancy clusters, the formation of microvoids, and the crack nucleation and propagation, is comprehensively understood on an atomic scale. In the present work, we first employ the activation-relaxation technique, in combination with ab initio and interatomic potential calculations, to systematically investigate vacancy cluster configurations in titanium and the transformation between these clusters. The results indicate the stable and metastable configurations of vacancy clusters at various sizes and activation energies of their dissociation, combination and migration. It is found that the formation and migration energies decrease with the size of vacancy cluster increasing. Small vacancy clusters stabilize at configurations with special symmetry, while large clusters transform into microvoids or microcracks. High-throughput molecular dynamics simulations are subsequently employed to investigate the influences of these clusters on plastic deformation under tensile loading. The clusters are found to facilitate the crack nucleation by providing lower critical stress, which decreases with the size of the vacancy clusters increasing. Under tensile loading, cracks are first nucleated at small clusters and then grow up, while large clusters form microvoids and cracks directly grow up.
      Corresponding author: Wang Hao, haowang@imr.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2016YFB0701304), the National Natural Science Foundation of China (Grant Nos. 51671195, 11674233, 61603265), and the Technology Foundation of Shenyang Normal University, China (Grant No. L201521).
    [1]

    Bache M R 2003 Int. J. Fatigue 25 1079

    [2]

    Dunne F P E, Rugg D, Walker A 2007 Int. J. Plast. 23 1061

    [3]

    Sinha V, Mills M J, Williams J C 2004 Metall. Mater. Trans. A 35 3141

    [4]

    Pilchak A L, Williams R E A, Williams J C 2010 Metall. Mater. Trans. A 41 106

    [5]

    Veyssière P, Wang H, Xu D S, Chiu Y L 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012018

    [6]

    Xu D S, Wang H, Yang R, Veyssière P 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012024

    [7]

    Wang H, Xu D S, Yang R, Veyssière P 2008 Acta Mater. 56 4608

    [8]

    Wang H, Xu D S, Yang R, Veyssière P 2009 Acta Mater. 57 3725

    [9]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 1

    [10]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 10

    [11]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 19

    [12]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2011 Phys. Rev. B 84 220103

    [13]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2012 Philos. Mag. 93 186

    [14]

    Wang H, Xu D S, Veyssière P, Yang R 2013 Acta Mater. 61 3499

    [15]

    Wang H, Xu D S, Yang R 2014 Model. Simul. Mater. Sci. Eng. 22 085004

    [16]

    Sinha V, Mills M J, Williams J C 2006 Metall. Mater. Trans. A 37 2015

    [17]

    Sparkman D M, Millwater H R, Ghosh S 2013 Fatigue Fract. Eng. Mater. Struct. 36 994

    [18]

    Dunne F P E 2014 Curr. Opin. Solid State Mater. Sci. 18 170

    [19]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102

    [20]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [21]

    Nose S 1984 J. Chem. Phys. 81 511

    [22]

    Martínez E, Uberuaga B P 2015 Sci. Rep. 5 9084

  • [1]

    Bache M R 2003 Int. J. Fatigue 25 1079

    [2]

    Dunne F P E, Rugg D, Walker A 2007 Int. J. Plast. 23 1061

    [3]

    Sinha V, Mills M J, Williams J C 2004 Metall. Mater. Trans. A 35 3141

    [4]

    Pilchak A L, Williams R E A, Williams J C 2010 Metall. Mater. Trans. A 41 106

    [5]

    Veyssière P, Wang H, Xu D S, Chiu Y L 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012018

    [6]

    Xu D S, Wang H, Yang R, Veyssière P 2008 IOP Conf. Series: Mater. Sci. Eng. 3 012024

    [7]

    Wang H, Xu D S, Yang R, Veyssière P 2008 Acta Mater. 56 4608

    [8]

    Wang H, Xu D S, Yang R, Veyssière P 2009 Acta Mater. 57 3725

    [9]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 1

    [10]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 10

    [11]

    Wang H, Xu D S, Yang R, Veyssière P 2011 Acta Mater. 59 19

    [12]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2011 Phys. Rev. B 84 220103

    [13]

    Wang H, Rodney D, Xu D S, Yang R, Veyssière P 2012 Philos. Mag. 93 186

    [14]

    Wang H, Xu D S, Veyssière P, Yang R 2013 Acta Mater. 61 3499

    [15]

    Wang H, Xu D S, Yang R 2014 Model. Simul. Mater. Sci. Eng. 22 085004

    [16]

    Sinha V, Mills M J, Williams J C 2006 Metall. Mater. Trans. A 37 2015

    [17]

    Sparkman D M, Millwater H R, Ghosh S 2013 Fatigue Fract. Eng. Mater. Struct. 36 994

    [18]

    Dunne F P E 2014 Curr. Opin. Solid State Mater. Sci. 18 170

    [19]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 024102

    [20]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [21]

    Nose S 1984 J. Chem. Phys. 81 511

    [22]

    Martínez E, Uberuaga B P 2015 Sci. Rep. 5 9084

Metrics
  • Abstract views:  6985
  • PDF Downloads:  212
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2017
  • Accepted Date:  18 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回
Baidu
map