Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A blind source separation method for chaotic signals based on artificial bee colony algorithm

Chen Yue Lü Shan-Xiang Wang Meng-Jiao Feng Jiu-Chao

Citation:

A blind source separation method for chaotic signals based on artificial bee colony algorithm

Chen Yue, Lü Shan-Xiang, Wang Meng-Jiao, Feng Jiu-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The inherent features, such as non-periodic, wide band spectrum, and extreflely sensitive to initial values etc. make it quite a challenge to blindly separate the mixed chaotic signals. A new blind source separation method based on the artificial bee colony algorithm is proposed in this paper. This method can recover chaotic sources from noisy observations on their linear mixtures without any prior information about the source equations. The proposed method is structured in the phase space of the demixed signals, which is reconstructed from the observations by using delay-embedding method. An objective function in the reconstructed phase space is designed so that the blind source separation problem is transformed into an optimization problem. The optimal demixing matrix is obtained by maximize the objective function with an artificial bee colony optimizer and the chaotic sources are then recovered by multiplying the observed mixtures and the optimal demixing matrix. Before the optimization procedure is made, a pre-whitening should be employed. Additionally, the parameterized repreflentation of orthogonal matrices through principal rotation is adopted to reduce the dimension of the optimization procedure so that the proposed blind source separation algorithm can converge quickly. Different from the traditional independent component analysis approaches which concern mainly the statistical features, the proposed blind source separation method utilizes the dynamics in the observed mixtures by means of phase space reconstruction. Therefore, better performance can be achieved when it is used to deal with chaotic signals. In computer simulation, two cases are taken into consideration: namely, the mixture is noiseless or not contaminated by noise. The correlation coefficient criterion and the performance index criterion are adopted to evaluate the separation performances. Simulation result shows that in most cases the proposed approach converges within a few tens of iterations and the chaotic sources can be accurately recovered. The impact of noise level and signal length on the separation performance is investigated in detail. The overall performance of the proposed approach is much better than the traditional independent component analysis approaches. Moreover, the capability of separating the mixed chaotic and Gaussian signals reflealed in the simulation indicates that the proposed approach has the potential to be applied in a wider range of applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60872123), the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province, China (Grant No. U0835001), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2012ZM0025), and the fund for Higher-Level Talents of Guangdong Province, China (Grant No. N9101070).
    [1]

    Feng J C, Tse C K 2008 Reconstruction of Chaotic Signals with Applications to Chaos-based Communications (Beijing: Tsinghua University Press) pp3-20

    [2]

    Andreflev Y V, Dmitriev A S, Efremova E V, Anagnostopoulos A N 2003 IEEE Trans. Circ. Syst. I 50 613

    [3]

    Hu Z H, Feng J C 2010 Journal of Southwest University (Natural Science) 32 146 (in Chinese) [胡志辉, 冯久超 2010 西南大学学报 (自然科学版) 32 146]

    [4]

    Huang J W, Feng J C, L S X 2014 Acta Phys. Sin. 63 050502 (in Chinese) [黄锦旺, 冯久超, 吕善翔 2014 63 050502]

    [5]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]

    [6]

    Chen H B, Feng J C, Fang Y 2008 Chin. Phys. Lett. 25 405

    [7]

    Kuraya M, Uchida A, Yoshimori S, Umeno K 2008 Optics Express 16 725

    [8]

    Gong Y R, He D, He C 2012 Acta Phys. Sin. 61 120502 (in Chinese) [宫蕴瑞, 何迪, 何晨 2012 61 120502]

    [9]

    Comon P, Jutten C 2010 Handbook of Blind Source Separation (Waltham: Academic Press) pp6-15

    [10]

    Olsson R K, Hansen L K 2006 Journal of Machine Learning Research 7 2585

    [11]

    Galka A, Wong K, Ozaki T 2010 Modeling Phase Transitions in the Brain (Berlin:Springer) pp27-52

    [12]

    Galka A, Wong K, Stephani U, Ozaki T. Siniatchkin M 2013 International Journal of Bifurcation and Chaos 23 1350165

    [13]

    Wang B Y, Zheng W X 2006 IEEE Trans. Circ. Syst. II 53 143

    [14]

    Karaboga D, Basturk B 2007 Journal of Global Optimization 39 459

    [15]

    Karaboga D, Basturk B 2008 Applied Soft Computing 8 687

    [16]

    Takens F 1981 Lecture Notes in Mathematics (Berlin:Springer) pp366-381

    [17]

    L S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [18]

    Mavaddaty S, Ebrahimzadeh A 2012 20th Iranian Conference on Electrical Engineering Tehran, Iran May 15-17, 2012 p1172

    [19]

    Ebrahimzadeh A, Mavaddaty S 2014 Swarm and Evolutionary Computation 14 15

    [20]

    Schaub H, Tsiotras P, Junkins J L 1995 International Journal of Engineering Science 33 2277

    [21]

    Yang H H, Amari S I 1997 Neural Computation 9 1457

    [22]

    Cardoso J F 1999 Neural Computation 11 157

    [23]

    Hyvärinen A 1999 IEEE Trans. Neural Networks 10 626

    [24]

    Yang H H, Amari S 1997 Neural Computation 9 1457

  • [1]

    Feng J C, Tse C K 2008 Reconstruction of Chaotic Signals with Applications to Chaos-based Communications (Beijing: Tsinghua University Press) pp3-20

    [2]

    Andreflev Y V, Dmitriev A S, Efremova E V, Anagnostopoulos A N 2003 IEEE Trans. Circ. Syst. I 50 613

    [3]

    Hu Z H, Feng J C 2010 Journal of Southwest University (Natural Science) 32 146 (in Chinese) [胡志辉, 冯久超 2010 西南大学学报 (自然科学版) 32 146]

    [4]

    Huang J W, Feng J C, L S X 2014 Acta Phys. Sin. 63 050502 (in Chinese) [黄锦旺, 冯久超, 吕善翔 2014 63 050502]

    [5]

    Wang S Y, Feng J C 2012 Acta Phys. Sin. 61 170508 (in Chinese) [王世元, 冯久超 2012 61 170508]

    [6]

    Chen H B, Feng J C, Fang Y 2008 Chin. Phys. Lett. 25 405

    [7]

    Kuraya M, Uchida A, Yoshimori S, Umeno K 2008 Optics Express 16 725

    [8]

    Gong Y R, He D, He C 2012 Acta Phys. Sin. 61 120502 (in Chinese) [宫蕴瑞, 何迪, 何晨 2012 61 120502]

    [9]

    Comon P, Jutten C 2010 Handbook of Blind Source Separation (Waltham: Academic Press) pp6-15

    [10]

    Olsson R K, Hansen L K 2006 Journal of Machine Learning Research 7 2585

    [11]

    Galka A, Wong K, Ozaki T 2010 Modeling Phase Transitions in the Brain (Berlin:Springer) pp27-52

    [12]

    Galka A, Wong K, Stephani U, Ozaki T. Siniatchkin M 2013 International Journal of Bifurcation and Chaos 23 1350165

    [13]

    Wang B Y, Zheng W X 2006 IEEE Trans. Circ. Syst. II 53 143

    [14]

    Karaboga D, Basturk B 2007 Journal of Global Optimization 39 459

    [15]

    Karaboga D, Basturk B 2008 Applied Soft Computing 8 687

    [16]

    Takens F 1981 Lecture Notes in Mathematics (Berlin:Springer) pp366-381

    [17]

    L S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [18]

    Mavaddaty S, Ebrahimzadeh A 2012 20th Iranian Conference on Electrical Engineering Tehran, Iran May 15-17, 2012 p1172

    [19]

    Ebrahimzadeh A, Mavaddaty S 2014 Swarm and Evolutionary Computation 14 15

    [20]

    Schaub H, Tsiotras P, Junkins J L 1995 International Journal of Engineering Science 33 2277

    [21]

    Yang H H, Amari S I 1997 Neural Computation 9 1457

    [22]

    Cardoso J F 1999 Neural Computation 11 157

    [23]

    Hyvärinen A 1999 IEEE Trans. Neural Networks 10 626

    [24]

    Yang H H, Amari S 1997 Neural Computation 9 1457

  • [1] Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao. Denoising of contaminated chaotic signals based on collaborative filtering. Acta Physica Sinica, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [2] Li Guang-Ming, Hu Zhi-Hui. Blind chaotic signal extraction based on artificial bee colony algorithm. Acta Physica Sinica, 2016, 65(23): 230501. doi: 10.7498/aps.65.230501
    [3] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [4] Yang Dong-Dong, Ma Hong-Guang, Xu Dong-Hui, Feng Xiao-Wei. Design of the matched chaotic stimulation for fault detection of the single input single output system. Acta Physica Sinica, 2014, 63(12): 120508. doi: 10.7498/aps.63.120508
    [5] Xing Hong-Yan, Zhu Qing-Qing, Xu Wei. A method of weak target detection based on the sea clutter. Acta Physica Sinica, 2014, 63(10): 100505. doi: 10.7498/aps.63.100505
    [6] Huang Jin-Wang, Li Guang-Ming, Feng Jiu-Chao, Jin Jian-Xiu. A chaotic signal reconstruction algorithm in wireless sensor networks. Acta Physica Sinica, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [7] Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang. Blind source separation of chaotic signals in wireless sensor networks. Acta Physica Sinica, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [8] Wang Wen-Bo, Zhang Xiao-Dong, Wang Xiang-Li. Chaotic signal denoising method based on independent component analysis and empirical mode decomposition. Acta Physica Sinica, 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [9] Lü Shan-Xiang, Feng Jiu-Chao. A phase space denoising method for chaotic maps. Acta Physica Sinica, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [10] Xing Hong-Yan, Cheng Yan-Yan, Xu Wei. Detection of weak target signal with least-squares support vector machine and generalized embedding windows under chaotic background. Acta Physica Sinica, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [11] Chen Di-Yi, Liu Ye, Ma Xiao-Yi. Parameter joint estimation of phase space reconstruction in chaotic time series based on radial basis function neural networks. Acta Physica Sinica, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [12] Wang Shi-Yuan, Feng Jiu-Chao. A novel method of estimating parameter and its application to blind separation of chaotic signals. Acta Physica Sinica, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [13] Li He, Yang Zhou, Zhang Yi-Min, Wen Bang-Chun. Methodology of estimating the embedding dimension in chaos time series based on the prediction performance of radial basis function neural networks. Acta Physica Sinica, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [14] Zhang Chun-Tao, Ma Qian-Li, Peng Hong, Jiang You-Yi. Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Physica Sinica, 2011, 60(2): 020508. doi: 10.7498/aps.60.020508
    [15] Cong Rui, Liu Shu-Lin, Ma Rui. An approach to phase space reconstruction from multivariate data based on data fusion. Acta Physica Sinica, 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [16] Li Xue-Xia, Feng Jiu-Chao. A blind separation method for chaotic signals. Acta Physica Sinica, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [17] Xiao Fang-Hong, Yan Gui-Rong, Han Yu-Hang. Information theory approach to determine embedding parameters for phase space reconstruction of chaotic time series. Acta Physica Sinica, 2005, 54(2): 550-556. doi: 10.7498/aps.54.550
    [18] You Rong-Yi, Chen Zhong, Xu Shen-Chu, Wu Bo-Xi. Study on phase-space reconstruction of chaotic signal based on wavelet transform. Acta Physica Sinica, 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [19] Yang Shao-Qing, Jia Chuan-Ying. . Acta Physica Sinica, 2002, 51(11): 2452-2458. doi: 10.7498/aps.51.2452
    [20] Wang Fu-Peng, Wang Zan-Ji, Guo Jing-Bo. . Acta Physica Sinica, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
Metrics
  • Abstract views:  7586
  • PDF Downloads:  907
  • Cited By: 0
Publishing process
  • Received Date:  07 October 2014
  • Accepted Date:  02 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map