搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工蜂群算法的混沌信号盲提取

李广明 胡志辉

引用本文:
Citation:

基于人工蜂群算法的混沌信号盲提取

李广明, 胡志辉

Blind chaotic signal extraction based on artificial bee colony algorithm

Li Guang-Ming, Hu Zhi-Hui
PDF
导出引用
  • 针对混沌信号在噪声信号中的提取问题,本文将其建立于线性混合模型进行分析.在该模型下,提出一种结合高维核函数的性能函数,该函数的计算复杂度较低.在使用人工蜂群算法来处理该多峰函数优化问题时,文中采用马尔可夫模型分析了人工蜂群算法的有效性.仿真实验表明本文方法能在较低复杂度下提取出相关系数很高的估计信号.
    This paper is to deal with the blind extraction problem of chaotic signals by using a linear mixing model. In this model, a novel method to describe the distance function in a high dimensional space is proposed which relates the kernel function to objective function. When adopting the artificial bee colony algorithm (ABCA) as an alternative method to solve a multi-modal optimization problem, its analysis under a Markov chain model is also presented. The simulation results show that the objective function of this article has low complexity, and the artificial bee colony algorithm converges to a local minimum quickly. To be specific, the target function is constructed by combining the advantages of the proliferation exponent and the distance kernel function. The proliferation exponent can reflect the chaotic properties of a signal to a large extent, and the distance kernel can help to describe the statistical properties in a higher dimension. Due to the fact that only one frame of time-delay embedded signal is adopted, the computational complexity of our target function is low. The artificial bee colony algorithm is shown to be advantageous over other swarm algorithms. Although adopting ABCA for our evaluation function seems easy, we analyze why this algorithm can work, in contrast to the fact that most literature only runs some simulations to confirm its usefulness. Our analysis is only for a special case when the number of employed bees is set to be 2 and the process of onlooker bees and scouts are temporarily omitted. With smaller complexity than the methods based on proliferation exponents and kurtosises, simulations show that our method can have excellent performance when evaluated by correlation coefficients.
      通信作者: 李广明, lgngmng@163.com
    • 基金项目: 国家自然科学基金(批准号:61170216,60872123)资助的课题.
      Corresponding author: Li Guang-Ming, lgngmng@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170216, 60872123).
    [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua Univ. Press) pp32-35(in Chinese)[冯久超2012混沌信号与信息处理(清华大学出版社)第32–35页]

    [2]

    Hu Z H, Feng J C 2011 Acta Phys. Sin. 60 070505 (in Chinese)[胡志辉, 冯久超2011 60 070505]

    [3]

    Hathaway D H, Wilson R M 2010 Sol. Phys. 224 5

    [4]

    Letellier C, Aguirre L A, Maquet J, Gilmore R 2006 Astron. Astrophys. 449 379

    [5]

    Mordvinov A V, Kramynin A P 2010 Sol. Phys. 264 269

    [6]

    Li G M, Lyu S X 2015 Chin. J. Electron. 24 584

    [7]

    Wang B Y, Zheng W X 2006 IEEE Trans. Circuits Syst. Express Briefs 53 143

    [8]

    Arena P, Buscarino A, Fortuna L, Frasca M 2006 Phys. Rev. E 74 1

    [9]

    Hu W, Liu Z 2008 IET Signal Proc. 2 424

    [10]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [11]

    Barros A K, Cichocki A 2001 Neural Comput. 13 1995

    [12]

    Ahmadian P, Sanei S, Ascari L, Villanueva L G, Umilta M A 2013 IEEE Trans. Neural Syst. Rehabil. Eng. 21 567

    [13]

    Chen H B, Feng J C, Fang Y 2008 Chin. Phys. Lett. 25 405

    [14]

    Li Y, Wang J, Zurada J M 2000 IEEE Trans. Neural Networks 11 1413

    [15]

    L S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [16]

    Scholkopf B 2001 Adv. Neural Inf. Proc. Syst. 13 301

    [17]

    Kwak N 2013 IEEE Trans. Neural Networks and Learning Systems 24 2113

    [18]

    Karaboga D, Basturk B 2007 J. Global Optim. 39 459

    [19]

    Karaboga D, Basturk B 2008 Appl. Soft Comput. J. 8 687

    [20]

    Chen Y, L S X, Wang M J, Feng J C 2015 Acta Phys. Sin. 64 090501 (in Chinese)[陈越, 吕善翔, 王梦蛟, 冯久超2015 64 090501]

    [21]

    Hyvarinen A, Oja E 2000 Neural Networks 13 411

  • [1]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua Univ. Press) pp32-35(in Chinese)[冯久超2012混沌信号与信息处理(清华大学出版社)第32–35页]

    [2]

    Hu Z H, Feng J C 2011 Acta Phys. Sin. 60 070505 (in Chinese)[胡志辉, 冯久超2011 60 070505]

    [3]

    Hathaway D H, Wilson R M 2010 Sol. Phys. 224 5

    [4]

    Letellier C, Aguirre L A, Maquet J, Gilmore R 2006 Astron. Astrophys. 449 379

    [5]

    Mordvinov A V, Kramynin A P 2010 Sol. Phys. 264 269

    [6]

    Li G M, Lyu S X 2015 Chin. J. Electron. 24 584

    [7]

    Wang B Y, Zheng W X 2006 IEEE Trans. Circuits Syst. Express Briefs 53 143

    [8]

    Arena P, Buscarino A, Fortuna L, Frasca M 2006 Phys. Rev. E 74 1

    [9]

    Hu W, Liu Z 2008 IET Signal Proc. 2 424

    [10]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [11]

    Barros A K, Cichocki A 2001 Neural Comput. 13 1995

    [12]

    Ahmadian P, Sanei S, Ascari L, Villanueva L G, Umilta M A 2013 IEEE Trans. Neural Syst. Rehabil. Eng. 21 567

    [13]

    Chen H B, Feng J C, Fang Y 2008 Chin. Phys. Lett. 25 405

    [14]

    Li Y, Wang J, Zurada J M 2000 IEEE Trans. Neural Networks 11 1413

    [15]

    L S X, Wang Z S, Hu Z H, Feng J C 2014 Chin. Phys. B 23 010506

    [16]

    Scholkopf B 2001 Adv. Neural Inf. Proc. Syst. 13 301

    [17]

    Kwak N 2013 IEEE Trans. Neural Networks and Learning Systems 24 2113

    [18]

    Karaboga D, Basturk B 2007 J. Global Optim. 39 459

    [19]

    Karaboga D, Basturk B 2008 Appl. Soft Comput. J. 8 687

    [20]

    Chen Y, L S X, Wang M J, Feng J C 2015 Acta Phys. Sin. 64 090501 (in Chinese)[陈越, 吕善翔, 王梦蛟, 冯久超2015 64 090501]

    [21]

    Hyvarinen A, Oja E 2000 Neural Networks 13 411

  • [1] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪.  , 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [2] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [3] 陈越, 吕善翔, 王梦蛟, 冯久超. 一种基于人工蜂群算法的混沌信号盲分离方法.  , 2015, 64(9): 090501. doi: 10.7498/aps.64.090501
    [4] 于舒娟, 宦如松, 张昀, 冯迪. 基于混沌神经网络的盲检测改进新算法.  , 2014, 63(6): 060701. doi: 10.7498/aps.63.060701
    [5] 杨东东, 马红光, 徐东辉, 冯晓伟. 单输入单输出系统故障检测中匹配混沌激励的设计.  , 2014, 63(12): 120508. doi: 10.7498/aps.63.120508
    [6] 黄锦旺, 李广明, 冯久超, 晋建秀. 一种无线传感器网络中的混沌信号重构算法.  , 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [7] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离.  , 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [8] 郭静波, 徐新智, 史启航, 胡铁华. 混沌直接序列扩频信号盲解调的硬件电路实现.  , 2013, 62(11): 110508. doi: 10.7498/aps.62.110508
    [9] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪.  , 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [10] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案.  , 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [11] 谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧. 基于多角度偏振相机的城市典型地物双向反射特性研究.  , 2012, 61(7): 077801. doi: 10.7498/aps.61.077801
    [12] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用.  , 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [13] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块离散小波变换的图像信息隐藏与盲提取算法.  , 2012, 61(8): 084203. doi: 10.7498/aps.61.084203
    [14] 李士军, 任玉, 卢俊, 蔡红星. 声光可调滤波器的超声波频率协调关系的研究.  , 2011, 60(5): 054216. doi: 10.7498/aps.60.054216
    [15] 胡志辉, 冯久超. 基于UKF的多用户混沌通信.  , 2011, 60(7): 070505. doi: 10.7498/aps.60.070505
    [16] 张善文, 巴音贺希格. 衍射光栅积分理论中核函数的简化及其特性分析.  , 2008, 57(6): 3486-3493. doi: 10.7498/aps.57.3486
    [17] 李雪霞, 冯久超. 一种混沌信号的盲分离方法.  , 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [18] 游荣义, 陈 忠, 徐慎初, 吴伯僖. 基于小波变换的混沌信号相空间重构研究.  , 2004, 53(9): 2882-2888. doi: 10.7498/aps.53.2882
    [19] 汪芙平, 王赞基, 郭静波. 混沌背景下信号的盲分离.  , 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [20] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取.  , 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
计量
  • 文章访问数:  6445
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-28
  • 修回日期:  2016-08-30
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map