-
Collapse of a confined bubble is the core problem of bubble dynamics. The recent study has shown that the collapse of macroscopic bubble may drive the motion of suspended particle with the similar size, but, there has still been a lack of the relevant study on a microscale. In the experiment about the bubble driven micro-motor, the locomotion of motor pushed by microjetting has been noticed. However, due to the limitation of experimental conditions, it is difficult to reveal the details of propulsion mechanism. In this paper, the volume of fluid based numerical method is adopted to simulate the interaction process between a collapsing microbubble and the suspended particle nearby. The spatial distribution and the time evolution of flow field are obtained, and the velocity that the micromotor could be achieved is deduced by integrating the impulsive force. The results show that when the bubble size is fixed, the interaction force is inversely proportional to the size of microparticle and the gap between microparticle and bubble. The Kelvin impulse theorem is used to clarify the difference between the interaction on a macroscopic scale and that on a microscopic scale. This study not only extends the scope of cavitation dynamics, which reveals the characteristics of interaction between bubble and particle on a microscale, but also is significant for improving the efficiency of self-propelled micro-motor.
-
Keywords:
- bubble collapse /
- micromotor /
- volume of fluid /
- microflow
[1] Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]
[2] Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]
[3] Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197
[4] Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479
[5] Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904
[6] G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]
[7] Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]
[8] Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395
[9] Didenko Y T, Suslick K S 2002 Nature 418 394
[10] Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501
[11] Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333
[12] Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501
[13] Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157
[14] Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305
[15] Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016 65 220201]
[16] Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]
[17] Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]
[18] Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]
[19] Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]
[20] Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34
[21] Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909
[22] Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283
[23] Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156
-
[1] Yang F, Chen W Z, Tang X L 2009 Fluid Mach. 37 36(in Chinese)[杨帆, 陈伟政, 唐学林2009流体机械37 36]
[2] Huang J T 1991 Principle and Application of Cavitation (Beijing:Tsinghua University Press) p2(in Chinese)[黄继汤1991空化与空蚀的原理及应用(北京:清华大学出版社)第2页]
[3] Blake J R, Taib B B, Doherty G 1987 J. Fluid Mech. 181 197
[4] Blake J R, Taib B B, Doherty G 1986 J. Fluid Mech. 170 479
[5] Gregorčič P, Petkovšek R, Možina J 2007 J. Appl. Phys. 102 094904
[6] G K Batchelor (translated by Shen Q, Jia F) 1997 Introduction to the Fluid Dynamics (Beijing:Science Press) p69(in Chinese)[巴切勒G K著, (沈青, 贾复译)1997流体动力学引论(北京:科学出版社)第69页]
[7] Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 4 408(in Chinese)[高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越2009科学通报4 408]
[8] Kröninger D, Köhler K, Kurz T, W Lauterborn 2010 Exp. Fluids 48 395
[9] Didenko Y T, Suslick K S 2002 Nature 418 394
[10] Zwaan E, Le Gac S, Tsuji K, Ohl C D 2007 Phys. Rev. Lett. 98 254501
[11] Li S, Han R, Zhang A M 2016 J. Fluid. Struct. 65 333
[12] Poulain S, Guenoun G, Gart S, Crowe W, Jung S 2015 Phys. Rev. Lett. 114 214501
[13] Borkent B M, Arora M, Ohl C D, de Jong N, Versluis M, Lohse D, Khoo B C 2008 J. Fluid Mech. 610 157
[14] Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305
[15] Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese)[王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力2016 65 220201]
[16] Zhang J, Zheng X, Wang L L, Cui H H, Li Z H 2017 J. Exp. Fluid Mech. 31 61(in Chinese)[张静, 郑旭, 王雷磊, 崔海航, 李战华2017实验流体力学31 61]
[17] Zhou G J, Yan Z J, Xu S X 2000 Fluid Dynamics (Beijing:Higher Education Press) p132(in Chinese)[周光炯, 严宗教, 许世雄2000流体力学(北京:高等教育出版社)第132页]
[18] Wang F J 2004 Computational Fluid Dynamics (Beijing:Tsinghua University Press) p7(in Chinese)[王福军2004计算流体动力学分析:CFD软件原理与应用(北京:清华大学出版社)第7页]
[19] Zhang L X, Yin Q, Shao X M 2012 Chin. J. Hydrodyn. 27 127(in Chinese)[张凌新, 尹琴, 邵雪明2012水动力学研究与进展A辑27 127]
[20] Christopher E B 1995 Cavitation and Bubble Dynamics (New York:Oxford University Press) p34
[21] Petkovsek R, Gregorcic P 2007 J. Appl. Phys. 102 044909
[22] Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283
[23] Yeh H C, Yang W J 1968 J. Appl. Phys. 39 3156
Catalog
Metrics
- Abstract views: 5704
- PDF Downloads: 224
- Cited By: 0