-
使用改进的MRT-LBM对近壁空泡溃灭演化过程开展了数值模拟,并对空泡溃灭诱发壁面损伤的作用力机制进行了研究。首先,对改进外力格式的多松弛伪势模型开展了Laplace定律验证和热力学一致性验证;然后,结合改进外力格式的多松弛伪势模型对近壁空泡溃灭演化进行了数值模拟,获得了近壁空泡溃灭过程的流场细节,着重研究了溃灭过程中空泡的动力学行为。研究发现:近壁空泡溃灭过程中释放的微射流主要来源于第一次溃灭,而冲击波的产生来源于第一次溃灭和第二次溃灭,且第二次溃灭产生的冲击波强度显著高于第一次溃灭产生的冲击波;进一步,对近壁空泡溃灭过程中壁面处压力与速度的分布特性进行了分析,研究了空泡溃灭作用于壁面的载荷机制。研究发现:壁面受到了冲击波和微射流的共同作用,冲击波作用范围大,造成面损伤,而微射流作用在局部区域,造成点状破坏。研究结果揭示了近壁空泡溃灭演化过程以及空泡溃灭诱发壁面损伤的作用力机制,为进一步利用空化效应及减少空蚀带来的破坏提供了理论支撑。To reveal the load mechanism of wall damage induced by bubble collapse, numerical simulation of the near-wall cavitation bubble collapse evolution was conducted using an improved Multi-Relaxation-Time Lattice Boltzmann Method (MRT-LBM), and the dynamic behavior of near-wall cavitation bubble was systematically analyzed. First, the improved multi-relaxation pseudopotential model with a modified force scheme was introduced and validated through the Laplace law and thermodynamic consistency. Subsequently, the near-wall bubble collapse evolution was simulated using the improved model, and the process of the bubble collapse evolution were obtained. The accuracy of the numerical simulation results was confirmed by comparing with previous experimental results. Based on the obtained flow field information, including velocity and pressure distributions, the dynamic behaviors during the bubble collapse were thoroughly analyzed. The results show that the micro-jets released during the near-wall bubble collapse primarily originate from the first collapse, while the shock waves are generated during both the first and second collapses. Notably, the intensity of the shock waves produced during the second collapse is significantly higher than that of the first collapse. Furthermore, the distribution characteristics of pressure and velocity on the wall during the near-wall bubble collapse were analyzed, revealing the load mechanism of wall damage caused by bubble collapse. The results show that the wall is subjected to the combined effects of shock waves and micro-jets: shock waves cause large-area surface damage due to their extensive propagation range, whereas micro-jets lead to concentrated point damage with their localized high-velocity impact. In summary, this study elucidates the evolution of near-wall bubble collapse and the load mechanism of wall damage induced by bubble collapse, providing theoretical support for further utilization of cavitation effects and mitigation of cavitation-induced damage.
-
Keywords:
- MRT-LBM /
- pseudopotential model /
- collapse of near-wall bubble /
- cavitation erosion
-
[1] Ren J L 2023M.S. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese) [任嘉乐2023硕士学位论文(兰州:兰州理工大学)]
[2] Mi J D 2022M.S. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese) [米建东2022硕士学位论文(兰州:兰州理工大学)]
[3] Kling C L, Hammitt F G 1972Journal of Basic Engineering 94 825
[4] Plesset M S, Chapman R B 1971Journal of Fluid Mechanics 47 283
[5] Li B B, Jia W, Zhang H C, Lu J 2014Shock Waves 24 317
[6] Aganin A A, Ilgamov M A, Kosolapova L A, Malakhov V G 2016Thermophysics and Aeromechanics 23 211
[7] Ren S, Zhang J Z, Zhang Y M, W D 2014Acta Phys. Sin. 63 024702(in Chinese) [任晟, 张家忠, 张亚苗, 卫丁2014 63 024702
[8] Li X H, Shan X W, Duan W Y 2022Acta Aerodynamica Sinica 40 46(in Chinese) [李旭晖, 单肖文, 段文洋2022空气动力学学报40 46]
[9] Li X, Shi Y, Shan X 2019Physical Review E 100 013301
[10] Shan X, Chen H 1993Physical Review E 47 1815
[11] Shan X, Chen H 1994Physical Review E 49 2941
[12] Sukop M C, Or D 2005Physical Review E 71 046703
[13] Shan M, Zhu C, Zhou X, Yin C, Han Q 2016Journal of Hydrodynamics 28 442
[14] Shan M, Zhu Y, Yao C, Han Q, Zhu C 2017Journal of Applied Mathematics and Physics 5 1243
[15] He X, Zhang J, Yang Q, Peng H, Xu W 2020Physical Review E 102 063306
[16] Li Q, Luo K, Li X 2013Physical Review E 87 053301
[17] Li Q, Luo K, Li X 2012Physical Review E 86 016709
[18] Peng H, Zhang J, He X, Wang Y 2021Computers & Fluids 217 104817
[19] Liu Y, Peng Y 2021Journal of Marine Science and Engineering 9 219
[20] Yang Y, Shan M, Kan X, Shangguan Y, Han Q 2020Ultrasonics-Sonochemistry 62 104873
[21] Yang Y, Shan M, Su N, Kan X, Shangguan Y, Han Q 2022International Communications in Heat and Mass Transfer 134 105988
[22] He Y L, Li Q, Wang Y, Tong Z X 2023Lattice Boltzmann Method: Theory and Applications (Beijing: Higher Education Press) p52(in Chinese) [何雅玲, 李庆, 王勇, 童自翔2023格子Boltzmann方法的理论及应用(北京: 高等教育出版社)第52页]
[23] Guo Z L, Zheng C G 2009Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p46(in Chinese) [郭照立, 郑楚光2009格子Boltzmann方法的原理及应用(北京: 科学出版社)第46页]
[24] Ren S 2014Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese) [任晟2014博士学位论文(西安:西安交通大学)]
[25] Li Q, Luo K, Kang Q, Chen Q 2014Physical Review E 90 053301
[26] Huang H, Sukop M C, Lu X 2015Multiphase lattice Boltzmann methods: Theory and Application (New Jersey: Wiley Blackwell) p20
[27] Yuan P, Schaefer L 2006Physics of Fluids 18 042101
[28] Zhang X M, Zhou C Y, Islam S, Liu J Q 2009Acta Phys. Sin., 58 8406(in Chinese) [张新明, 周超英, Islam Shams, 刘家琦2009 , 58 8406]
[29] Sofonea V, Biciuşcă, T, Busuioc S, Ambruş V E, Gonnella G, Lamura A 2018Physical Review E 97023309
[30] Philipp A, Lauterborn W 1998Journal of Fluid Mechanics 361 75
计量
- 文章访问数: 147
- PDF下载量: 12
- 被引次数: 0