搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进MRT-LBM的近壁空泡溃灭模拟及诱发壁面损伤的作用力机制研究

柴廉洁 周国龙 武伟 张家忠

引用本文:
Citation:

基于改进MRT-LBM的近壁空泡溃灭模拟及诱发壁面损伤的作用力机制研究

柴廉洁, 周国龙, 武伟, 张家忠

Simulation of near-wall bubble collapse and study on load mechanism of wall damage based on improved MRT-LBM

Chai Lianjie, Zhou Guolong, Wu Wei, Zhang Jiazhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 使用改进的MRT-LBM对近壁空泡溃灭演化过程开展了数值模拟,并对空泡溃灭诱发壁面损伤的作用力机制进行了研究。首先,对改进外力格式的多松弛伪势模型开展了Laplace定律验证和热力学一致性验证;然后,结合改进外力格式的多松弛伪势模型对近壁空泡溃灭演化进行了数值模拟,获得了近壁空泡溃灭过程的流场细节,着重研究了溃灭过程中空泡的动力学行为。研究发现:近壁空泡溃灭过程中释放的微射流主要来源于第一次溃灭,而冲击波的产生来源于第一次溃灭和第二次溃灭,且第二次溃灭产生的冲击波强度显著高于第一次溃灭产生的冲击波;进一步,对近壁空泡溃灭过程中壁面处压力与速度的分布特性进行了分析,研究了空泡溃灭作用于壁面的载荷机制。研究发现:壁面受到了冲击波和微射流的共同作用,冲击波作用范围大,造成面损伤,而微射流作用在局部区域,造成点状破坏。研究结果揭示了近壁空泡溃灭演化过程以及空泡溃灭诱发壁面损伤的作用力机制,为进一步利用空化效应及减少空蚀带来的破坏提供了理论支撑。
    To reveal the load mechanism of wall damage induced by bubble collapse, numerical simulation of the near-wall cavitation bubble collapse evolution was conducted using an improved Multi-Relaxation-Time Lattice Boltzmann Method (MRT-LBM), and the dynamic behavior of near-wall cavitation bubble was systematically analyzed. First, the improved multi-relaxation pseudopotential model with a modified force scheme was introduced and validated through the Laplace law and thermodynamic consistency. Subsequently, the near-wall bubble collapse evolution was simulated using the improved model, and the process of the bubble collapse evolution were obtained. The accuracy of the numerical simulation results was confirmed by comparing with previous experimental results. Based on the obtained flow field information, including velocity and pressure distributions, the dynamic behaviors during the bubble collapse were thoroughly analyzed. The results show that the micro-jets released during the near-wall bubble collapse primarily originate from the first collapse, while the shock waves are generated during both the first and second collapses. Notably, the intensity of the shock waves produced during the second collapse is significantly higher than that of the first collapse. Furthermore, the distribution characteristics of pressure and velocity on the wall during the near-wall bubble collapse were analyzed, revealing the load mechanism of wall damage caused by bubble collapse. The results show that the wall is subjected to the combined effects of shock waves and micro-jets: shock waves cause large-area surface damage due to their extensive propagation range, whereas micro-jets lead to concentrated point damage with their localized high-velocity impact. In summary, this study elucidates the evolution of near-wall bubble collapse and the load mechanism of wall damage induced by bubble collapse, providing theoretical support for further utilization of cavitation effects and mitigation of cavitation-induced damage.
  • [1]

    Ren J L 2023M.S. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese) [任嘉乐2023硕士学位论文(兰州:兰州理工大学)]

    [2]

    Mi J D 2022M.S. Dissertation (Lanzhou: Lanzhou University of Technology) (in Chinese) [米建东2022硕士学位论文(兰州:兰州理工大学)]

    [3]

    Kling C L, Hammitt F G 1972Journal of Basic Engineering 94 825

    [4]

    Plesset M S, Chapman R B 1971Journal of Fluid Mechanics 47 283

    [5]

    Li B B, Jia W, Zhang H C, Lu J 2014Shock Waves 24 317

    [6]

    Aganin A A, Ilgamov M A, Kosolapova L A, Malakhov V G 2016Thermophysics and Aeromechanics 23 211

    [7]

    Ren S, Zhang J Z, Zhang Y M, W D 2014Acta Phys. Sin. 63 024702(in Chinese) [任晟, 张家忠, 张亚苗, 卫丁2014 63 024702

    [8]

    Li X H, Shan X W, Duan W Y 2022Acta Aerodynamica Sinica 40 46(in Chinese) [李旭晖, 单肖文, 段文洋2022空气动力学学报40 46]

    [9]

    Li X, Shi Y, Shan X 2019Physical Review E 100 013301

    [10]

    Shan X, Chen H 1993Physical Review E 47 1815

    [11]

    Shan X, Chen H 1994Physical Review E 49 2941

    [12]

    Sukop M C, Or D 2005Physical Review E 71 046703

    [13]

    Shan M, Zhu C, Zhou X, Yin C, Han Q 2016Journal of Hydrodynamics 28 442

    [14]

    Shan M, Zhu Y, Yao C, Han Q, Zhu C 2017Journal of Applied Mathematics and Physics 5 1243

    [15]

    He X, Zhang J, Yang Q, Peng H, Xu W 2020Physical Review E 102 063306

    [16]

    Li Q, Luo K, Li X 2013Physical Review E 87 053301

    [17]

    Li Q, Luo K, Li X 2012Physical Review E 86 016709

    [18]

    Peng H, Zhang J, He X, Wang Y 2021Computers & Fluids 217 104817

    [19]

    Liu Y, Peng Y 2021Journal of Marine Science and Engineering 9 219

    [20]

    Yang Y, Shan M, Kan X, Shangguan Y, Han Q 2020Ultrasonics-Sonochemistry 62 104873

    [21]

    Yang Y, Shan M, Su N, Kan X, Shangguan Y, Han Q 2022International Communications in Heat and Mass Transfer 134 105988

    [22]

    He Y L, Li Q, Wang Y, Tong Z X 2023Lattice Boltzmann Method: Theory and Applications (Beijing: Higher Education Press) p52(in Chinese) [何雅玲, 李庆, 王勇, 童自翔2023格子Boltzmann方法的理论及应用(北京: 高等教育出版社)第52页]

    [23]

    Guo Z L, Zheng C G 2009Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p46(in Chinese) [郭照立, 郑楚光2009格子Boltzmann方法的原理及应用(北京: 科学出版社)第46页]

    [24]

    Ren S 2014Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese) [任晟2014博士学位论文(西安:西安交通大学)]

    [25]

    Li Q, Luo K, Kang Q, Chen Q 2014Physical Review E 90 053301

    [26]

    Huang H, Sukop M C, Lu X 2015Multiphase lattice Boltzmann methods: Theory and Application (New Jersey: Wiley Blackwell) p20

    [27]

    Yuan P, Schaefer L 2006Physics of Fluids 18 042101

    [28]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009Acta Phys. Sin., 58 8406(in Chinese) [张新明, 周超英, Islam Shams, 刘家琦2009 , 58 8406]

    [29]

    Sofonea V, Biciuşcă, T, Busuioc S, Ambruş V E, Gonnella G, Lamura A 2018Physical Review E 97023309

    [30]

    Philipp A, Lauterborn W 1998Journal of Fluid Mechanics 361 75

  • [1] 危超, 余炫, 雷诚, 王自昱, 刘胜, 王度. HBr空芯光纤气体激光器的振动热池多能级理论模型与设计仿真.  , doi: 10.7498/aps.73.20240428
    [2] 陈芳英, 兰忠, 强伟丽, 廉士俊, 马学虎. 近壁区分子团聚现象的原位红外观测.  , doi: 10.7498/aps.68.20190397
    [3] 谭胜, 吴建军, 黄强, 张宇, 杜忻洳. 基于双相延迟模型的飞秒激光烧蚀金属模型.  , doi: 10.7498/aps.68.20182099
    [4] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究.  , doi: 10.7498/aps.67.20181375
    [5] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , doi: 10.7498/aps.66.198501
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , doi: 10.7498/aps.66.134205
    [7] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究.  , doi: 10.7498/aps.66.164702
    [8] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析.  , doi: 10.7498/aps.65.044304
    [9] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究.  , doi: 10.7498/aps.64.116601
    [10] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟.  , doi: 10.7498/aps.64.033401
    [11] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证.  , doi: 10.7498/aps.63.107901
    [12] 钱仙妹, 朱文越, 饶瑞中. 伪部分相干高斯-谢尔模型光束在湍流大气中传播的闪烁孔径平滑效应.  , doi: 10.7498/aps.62.044203
    [13] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型.  , doi: 10.7498/aps.62.210202
    [14] 李贝贝, 张宏超, 韩冰, 陈军, 倪晓武, 陆建. 圆锥边界附近激光空泡溃灭行为的研究.  , doi: 10.7498/aps.61.174210
    [15] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , doi: 10.7498/aps.58.4020
    [16] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究.  , doi: 10.7498/aps.57.1662
    [17] 吕 懿, 张鹤鸣, 戴显英, 胡辉勇, 舒 斌. SiGe HBT势垒电容模型.  , doi: 10.7498/aps.53.3239
    [18] 张钧, 裴文兵, 古培俊, 隋成之, 常铁强. 辐射烧蚀的自调制准定态模型.  , doi: 10.7498/aps.45.1677
    [19] 郑伟谋, 刘寄星. 量子双阱势准确解模型.  , doi: 10.7498/aps.34.1658
    [20] 张竞上, 卓益忠. 双阱-集团壳模型中的质心运动伪态.  , doi: 10.7498/aps.25.292
计量
  • 文章访问数:  147
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map